# POND SITING REPORT

Florida Department of Transportation District Five

I-75 (S.R.93) from South of S.R. 44 to S.R. 200 Marion County, Florida

Financial Management Number: 452074-2

ETDM Number: 14541

#### May 2024

The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by the Florida Department of Transportation (FDOT) pursuant to 23 USC § 327 and a Memorandum of Understanding dated May 26, 2022, and executed by the Federal Highway Administration and FDOT.





The environmental review, consultation, and other actions required by applicable federal environmental laws for this project are being, or have been, carried out by FDOT pursuant to 23 U.S.C. § 327 and a Memorandum of Understanding dated May 26, 2022 and executed by FHWA and FDOT.

# **Pond Siting Report Marion and Sumter Counties**

745

May 2024

FPID: 452074-2

# PROFESSIONAL ENGINEER CERTIFICATION

I hereby certify that I am a registered professional engineer in the State of Florida practicing engineering with Burgess & Niple, Inc. and that I have supervised the preparation of and approve the analysis, findings, opinions, conclusions, and technical advice hereby reported for:

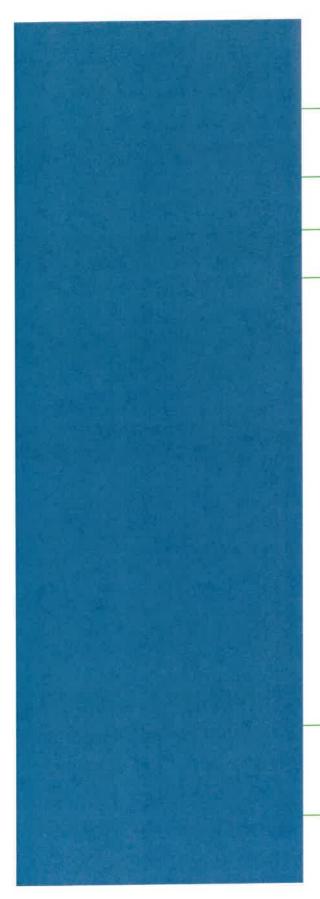
PROJECT: Interstate 75 (I-75) from South of State Road (S.R.) 44 to S.R. 200

ETDM Number: 14541

Financial Project ID: 452074-2

Federal Aid Project Number: N/A

PROJECT DOCUMENT: Pond Siting Report - Marion County


This pond siting report contains engineering information that fulfills the purpose and need for the I-75 Project Development & Environment Study for the Southern Section of I-75, beginning south of S.R. 44 and extending north to S.R. 200. I acknowledge that the procedures and references used to develop the results contained in this report are standard to the professional practice of transportation engineering as applied through professional judgment and experience.

I hereby certify that I am a registered professional engineer in the State of Florida practicing with Burgess & Niple, Inc., and that I have prepared or approved the evaluation, findings, opinions, conclusions, or technical advice for this project.

> This document has been signed and sealed by Carlton D. Spirio, Jr., P.E. on the date beneath the signature.

Printed copies of this document are not considered red and Burgess & Niple, Inc 1511 North Westshore Boulevard, Suite 500

Tampa, Florida 33607 Carlton Donald Spirio, Jr. PE No. 47649



# **Table of Contents**

#### INTRODUCTION

Table 1 - Water Management District Design Criteria

#### EXISTING DRAINAGE CHARACTERISTICS

#### PROPOSED ROADWAY IMPROVEMENTS

DRAINAGE BASIN AND POND SITING DESCRIPTIONS

| BASIN 9  | 4  |
|----------|----|
| BASIN 10 | 5  |
| BASIN 11 |    |
| BASIN 12 |    |
| BASIN 13 | 6  |
| BASIN 14 | 6  |
| BASIN 15 | 7  |
| BASIN 16 |    |
| BASIN 17 | 7  |
| BASIN 18 |    |
| BASIN 19 |    |
| BASIN 20 |    |
| BASIN 21 |    |
| BASIN 22 |    |
| BASIN 23 | 10 |
| BASIN 24 |    |
| BASIN 25 | 11 |
| BASIN 26 |    |
| BASIN 27 |    |
| BASIN 28 | 12 |
| BASIN 29 |    |
| BASIN 30 |    |
| BASIN 31 |    |
| BASIN 32 |    |
|          |    |

#### FLOODPLAIN CONSIDERATIONS

Table 2 – Pond Evaluation Matrix

#### **APPENDIX**

Exhibit A - I-75 Ponds Preliminary Right-of-Way Exhibit B - Pond Sizing Worksheets Exhibit C- I-75 Flood Hazard Zones and Soils

#### Introduction

The purpose of this Report is to provide documentation for the pond siting efforts required to address the stormwater management needs to preserve the historic drainage patterns throughout the project corridor involving the proposed roadway improvements to I-75. The project limits begin just north of the Turnpike interchange with I-75 and extend northward to S.R. 200. This project area has been divided into 34 drainage basins based on the overland topography and other features that influence the drainage patterns throughout this portion of I-75. This report summarizes the research efforts and data reconnaissance involving the existing drainage conditions, along with the hydrology and hydraulic criteria used to assess three (3) pond site alternatives within each of the drainage basins identified throughout the project.

The project corridor crosses the jurisdictional limits for both the St. Johns River and Southwest Florida Water Management Districts. The southern drainage basins, Basins 0 through 8, are within Sumter County, which is part of the jurisdictional limits for the Southwest Florida Water Management District (SWFWMD). The remainder of the drainage basins, Basins 9 through 32, are in Marion County. The I-75 corridor in Marion County serves as the boundary between the jurisdictional limits for both the St. John River Water Management District (SJRWMD) and the Southwest Florida Water Management District (SWFWMD). While the Statewide Environmental Resource Permit (SWERP) criteria awaits ratification by the Legislature to adopt consistent performance standards across Florida for water quality criteria, the current water quality and quantity criteria are different for both Water Management Districts. Therefore, the required water quality treatment and attenuation volumes for the drainage basins were computed in accordance with appropriate criteria for both Water Management Districts. Please refer to Table 1 for the specific design criteria requirements for both Water Management Districts. There are no Impaired Water Bodies nor Outstanding Florida Waters (OFWs) directly associated with the waterbodies that cross through this portion of I-75; however, Lake Panasoffkee is a designated OFW downstream of the I-75 Turnpike interchange area. Overall, there no additional water quality treatment volumes required to address sensitive watershed criteria long this portion of I-75.

| Design Element               | ign Element Criteria                                                   |                          |
|------------------------------|------------------------------------------------------------------------|--------------------------|
| SWFWMD                       | ·                                                                      |                          |
| Water Quality                | Wet Detention = 1" over DCIA                                           | B.O.R. Chapter 5.2 & 5.8 |
|                              | On-line = 0.5" over DCIA                                               | B.O.R. Chapter 5.7 & 5.8 |
| Water Quantity               | Open Basin = pre vs post comparison 25-Yr/24-Hr, 9" peak rate          | B.O.R. Chapter 4.2       |
|                              | Closed Basin = pre vs post comparison 100-Yr/24-Hr, 10.5"<br>peak rate | B.O.R. Chapter 4.2       |
| Outstanding Florida<br>Water | Additional 50% water quality volume                                    | B.O.R. Chapter 5.2e      |
| Floodplain                   | No net reduction of flood storage volume                               | B.O.R. Chapter 4.4       |
| SJRWMD                       |                                                                        | <u> </u>                 |
| Water Quality                | Wet Detention = greater of 1" over DA or 2.5" over DCIA                | P.I.M. Chapter 8.2       |

#### Table 1 Water Management District Design Criteria

|                              | Wet Detention PP ≤ 14-day average residence time, 21-<br>day non-littoral zone | P.I.M. Chapter 8.5   |
|------------------------------|--------------------------------------------------------------------------------|----------------------|
|                              | Wet Detention Max depth = 12' and mean depth 2' to 8'                          | P.I.M. Chapter 8.8   |
|                              | On-line retention = greater of 1" rainfall runoff or 1.25"<br>over DCIA        | P.I.M. Chapter 5.2   |
| Water Quantity               | Open Basin = pre vs post comparison 25-Yr/24-Hr, 9" peak<br>rate               | P.I.M. Chapter 3.2.1 |
|                              | Closed Basin = pre vs post comparison 25-Yr/96-Hr, 12"<br>peak rate            | P.I.M. Chapter 3.2.1 |
| Outstanding Florida<br>Water | Additional 50% water quality volume                                            | P.I.M. Chapter 5.2.2 |

## **Existing Drainage Characteristics**

The existing drainage for SR 93 (I-75) from south of SR 44 to SR 200 was assessed by conducting field reviews throughout the corridor and reviewing existing as-built plans and other available construction plans, Straight Line Diagrams (SLDs), Geographic Information System (GIS) maps, and Federal Emergency Management Agency (FEMA) Flood Insurance Rate Maps (FIRMs). Further, existing permit information was obtained from the Florida Department of Environmental Protection (FDEP), the St. John's River Florida Water Management District (SJRWMD) and the Southwest Florida Water Management District (SWFWMD).

Based on our research of this segment of I-75, the roadway crosses through two (2) major watersheds, both the Withlacoochee River and Ocklawaha River Basins. The Withlacoochee Basin is within the jurisdictional boundaries of SWFWMD and the Ocklawaha Basin is in the SJRWMD service area. Additionally, the project crosses seven (7) separate Water Basin ID's (WBID's) associated with the Withlacoochee River and the Ocklawaha River Watersheds. None of the WBID's are considered impaired within the vicinity of the I-75 corridor. The Ocklawaha River is an Outstanding Florida Water (OFW); however, the project does not directly discharge to this waterbody. Since the project limits extend through both SWFWMD and SJRWMD, interagency agreements are anticipated to determine the appropriate reviewing agency for this project. A BMAP exists for the Withlacoochee Basin and is pending for the Ocklawaha Basin. Our priority will be to maximize the interchanges for stormwater management. There are several sub-basins to both of these watersheds, which include Big Jones Creek (WBID 1324) within the Withlacoochee Basin (HUC 03100208) and Silver River Drain (WBID 2772B) within the Ocklawaha Basin (HUC 03080102). Due to the length of this project, approximately 33 subbasins were delineated along the I-75 corridor based on the historical drainage patterns and receiving waterbodies associated within the project limits. Much of the project drains to designated "Closed" Basins; however, the southern portion of the project, in Sumter County, consists of "Open Basins" that drain south into the Withlacoochee Basin through Lake Panasoffkee.

The land use within the southern project is primarily agriculture with some rural residential, industrial, commercial, mixed use, wooded and conservation. While the northern segment is mostly rural land on the east side of I-75 within significant portions of medium residential on the west side with scattered low residential, public, and municipal, and some preservation lands.

Stormwater runoff is collected and conveyed primarily by roadside ditches that often serve as both conveyance and linear stormwater management systems. Several sections of I-75 have been improved in the past and stormwater controls were added to the roadway ditches to provide beneficial treatment, intended to mitigate for the added impervious area to this roadway. Additionally, several infield areas associated with the various interchanges along this section of I-75 also provide stormwater management for both the mainline and connecting sides streets. There are many cross drains, side drains and small closed storm drain systems that convey and discharge runoff into numerous outfalls. Some subbasins have multiple isolated depressions and outfalls within the primary basin. Therefore, runoff is stored locally until it percolates into the ground or stages high enough to pop-off into an adjacent sub-basin.

#### **Proposed Roadway Improvements**

The proposed roadway improvements to I-75 will require new stormwater management controls to mitigate for the existing permitted systems and to address the roadway widening for the interim and ultimate roadway configurations. The interim design approach is to design new Auxiliary lanes that will begin at the interchange on-ramps and extend to the next interchange, where these lanes will become the off-ramp lanes.



The ultimate roadway typical section for I-75 consists of 12-lanes, four (4) General Use lanes and two (2) Express Lanes in each direction. Stormwater runoff from the proposed roadway improvements will be collected and conveyed in both open and closed storm drain systems and routed to stormwater management facilities located throughout the I-75 corridor for treatment and attenuation. Offsite drainage patterns will remain unchanged and runoff that currently drains towards the FDOT right of way will be collected and conveyed by diversion ditches that preserve the existing drainage patterns and discharge to the existing receiving waterbodies, where feasible, otherwise, the offsite flow will be incorporated into the stormwater management system for the specific subbasin.

This pond siting evaluation was prepared to provide information on potential stormwater management facilities that serve as viable hydraulic options in managing runoff from the proposed roadway improvements. Based on this information, we evaluated the existing overland topography, existing soils data, FEMA designated Floodplain areas and land uses along both side of I-75 to identify hydraulically feasible pond site alternatives to manage the stormwater runoff for the ultimate build-out of I-75. Additional considerations included seasonal high groundwater table elevation (SHWT), wetland jurisdictional boundaries, designated floodplain boundaries, contamination screenings, cultural

resources investigations, geologic (karst) features, and a thorough review of the corridor and surrounding areas.

The approach to the preliminary pond sizing included providing treatment volume for the additional impervious area and not the entire FDOT right of way area. However, the proposed pond site alternatives were also sized conservatively to account for the ultimate I-75 roadway typical section condition having a 300-feet wide right-of-way footprint throughout this portion of the project. Therefore, it was assumed that 90-percent of the ultimate build-out typical section would consist of impervious area due to the safety requirements associated with the expanded interstate corridor. Dry retention ponds are proposed in all basins due to the "Closed Basin" characteristics noted throughout much of the project. The southern limits of the project with Sumter County, will be evaluated for wet detention since this area is within an "Open Basin" with positive outfall to the Withlacoochee River. The preliminary pond sizes have been calculated accounting for attenuation based on volumetric differences in runoff predicted by the National Resources Conservation Service (NRCS) equation for runoff for the 100-year, 240-hour storm. However, the calculations do not consider percolation of the soil below the pond bottom. Therefore, some of the ponds may be able to provide less volume than the calculations illustrate due to high permeability rates and vertical separation between the pond bottom and the water table/confining layer.

Based on this information, the general design strategy for the pond site alternatives and stormwater conveyance is as follows:

- Maintain the existing drainage patterns, cross drain locations and sizes, and outfall locations.
- Provide treatment volume for the proposed additional impervious area and not the entire rightof-way.
- Identify three (3) pond site alternatives, at a minimum, for each drainage basin.
- Each pond site alternative is designed to retain 100-year/10-day volume to satisfy the Closed Basin criteria.
- Dry retention is the preferred stormwater management strategy.
- For the purposes of the pond siting efforts, no geotechnical data was collected for the proposed pond alternatives.
- Design considerations will include considerations for the existing the karst conditions associated with the shallow clay and limestone subsurface throughout Marion County

All of the pond site alternatives are displayed on the Pond Right-of-Way Sheets in Appendix A. The following sections provide more detailed information for each of the basins along the corridor.

### **Drainage Basin and Pond Siting Descriptions**

#### **BASIN 9**

Basin 9 extends approximately from STA 1512+00 to 1464+00 (5,550 ft). There is a Station Equation at the Sumter/Marion County Lines that alters the stationing along I-75 as follows: STA 1525+64.00(Back)/STA 1422+88.98(Ahead). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of I-75. The existing onsite basin area is

38.22 acres, of which 11.11 acres are impervious area. In the existing conditions, runoff from Basin 9 flows to conveyance swales along both sides of I-75.

Basin 9 is a Closed Basin; therefore, there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1437+30. There is an existing 36" cross drain near STA 1438+80 connecting the swales on both sides of the road. Additionally, there are six (6) cross drains that convey the runoff from one side of the road to the roadside swales.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Based on the evaluation criteria used to assess each pond site alternative, Pond 9-2 on the west side of I-75 between Stations 1445+00 and 1455+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 62.0-feet, NAVD, near Station 1437+30. The preliminary pond results produced a peak stage elevation of 59.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 10**

Basin 10 extends approximately from STA 1464+00 to 1505+50 (4,150 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of I-75. The existing onsite basin area is 28.66 acres, of which 8.40 acres are impervious area. In the existing conditions, runoff from Basin 10 flows to conveyance swales along both sides of I-75.

Basin 10 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1473+90. There is an existing 24" cross drain near STA 1473+00 connecting the swales on both sides of the road. Additionally, there are three (3) cross drains that convey the runoff from one side of the road to the roadside swales.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Based on the evaluation criteria used to assess each pond site alternative, Pond 10-3 on the west side of I-75 between Stations 1464+00 and 1472+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 63.0-feet, NAVD, near Station 1473+90. The preliminary pond results produced a peak stage elevation of 59.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 11**

Basin 11 extends approximately from STA 1505+50 to 1545+00 (3,950 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of I-75. The existing onsite basin area is 27.14 acres, of which 7.96 acres are impervious area. In the existing conditions, runoff from Basin 11 flows to conveyance swales along both sides of I-75.

Basin 11 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1540+00. There is an existing 30" cross drain near STA

1539+00 connecting the swales on both sides of the road. Additionally, there are three (3) cross drains that convey the runoff from one side of the road to the roadside swales.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. However, due to coordination issues with property owners in Basin 12 and the willingness of the property owner to sell their land as part of Pond Alternative 11-1, a new pond alternative was developed to address stormwater management in both Basin 11 and 12. The preliminary sizing calculations are provided in Appendix B of this Report. Currently, Pond Alternative 11-1 is the preferred site, which is on the east side of I-75 between Stations 1525+00 and 1532+00. If Basin 12 is included into Basin 11 based on the willingness of the property owner to work with FDOT, Pond Alternative 11-4/12-4 on the east side of I-75 between Stations 1525+00 and 1539+00 will become the preferred alternative for both basins. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 61.0-feet, NAVD, near Station 1540+00. The preliminary pond results produced a peak stage elevation of 59.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 12**

Basin 12 extends approximately from STA 1545+00 to 1596+50 (5,150 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of I-75. The existing onsite basin area is 41.80 acres, of which 10.40 acres are impervious area. In the existing conditions, runoff from Basin 12 flows to conveyance swales along both sides of I-75. Ocala Weigh Station starts from near STA 1550+00. There are 6 regular ponds around the weigh station that are within offsite areas of Basin 12.

Basin 12 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1544+00. There is an existing 30" cross drain near STA 1588+00 connecting the swales on both sides of the road.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Currently, Pond Alternative 12-1 is the preferred site, which is on the east side of I-75 between Stations 1542+00 and 1549+50. If Basin 12 is included into Basin 11 based on the willingness of the property owner to work with FDOT, Pond Alternative 11-4/12-4 on the east side of I-75 between Stations 1525+00 and 1539+00 will become the preferred alternative for both basins. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Since this is a shared basin and combines with Basin 14, the pond HGL of 59.0-feet, NAVD, is well below the low edge of pavement, which is approximately 61-feet, NAVD.

#### **BASIN 13**

Basin 13 extends approximately from STA 1596+50 to 1642+50 (4,600 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of I-75. The existing onsite basin area is 37.80 acres, of which 9.29 acres are impervious area. In the existing conditions, runoff from Basin 13 flows to conveyance swales along both sides of I-75. There are also 2 linear ponds in the median, interconnected by MES, that accept stormwater runoff from both sides of I-75 road.

Basin 13 is a Closed Basin; therefore, there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1596+50. There is no cross drain or side drain in this basin.

Three (3) pond site alternatives were evaluated on the west side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Based on the evaluation criteria used to assess each pond site alternative, Pond 13-1 on the west side of I-75 between Stations 1605+00 and 1619+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 69.0-feet, NAVD, near Station 1596+50. The preliminary pond results produced a peak stage elevation of 67.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 14**

Basin 14 extends approximately from STA 1642+50 to 1669+80 (approximately 2,730 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of I-75. The Existing onsite basin area is 18.80 acres, of which 5.52 acres are impervious areas. In the existing conditions, runoff from Basin 14 flows to conveyance swales along both sides of I-75.

Basin 14 is a Closed Basin therefore there is no positive outfall for this basin. There is an existing 30" cross drain near STA 1655+90 connecting the swales on both sides of the road.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. However, due to various hardships within both Basins 14 and 15, two (2) of the sites 14-1 and 14-3 have been sized to include Basin 15. Pond Site Alternative 14-2 is the only standalone site within Basin 14, which is on the west side of I-75. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 14-1/15-1 on the east side of I-75 between Stations 1650+00 and 1658+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 72.0-feet, NAVD, near Station 1655+90. The preliminary pond results produced a peak stage elevation of 59.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 15**

Basin 15 extends approximately from STA 1669+80 to 1684+80 (approximately 2,500 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of I-75. The Existing onsite basin area is 16.35 acres, of which 3.03 acres are impervious areas. Runoff from Basin 15 flows southward through conveyance swales and depression areas along both sides of the limited access right of way into Basin 14 and continues to the low storage area within the basin.

Basin 15 is a Closed Basin therefore there is no positive outfall for this basin.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. As previously mentioned in the Basin 14 write-up, both Basins 14 and 15, share two (2) of the pond site alternatives 14-1/15-1 and 14-3/15-3 have been sized to include both

basins. Pond Site Alternative 15-2 is the only standalone site within Basin 15, which is on the west side of I-75. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 14-1/15-1 on the east side of I-75 between Stations 1650+00 and 1658+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Since this is a shared basin and combines with Basin 14, the pond HGL of 59.0-feet, NAVD, is well below the low edge of pavement, which is approximately 72.0-feet, NAVD.

#### **BASIN 16**

Basin 16 contains the northern half of the I-75/Hwy 484 interchange and extends from STA 1684+80 to 1722+00 (3,720 ft). The onsite roadway right-of-way between those stations and offsite contributions from the west side of the I-75. The existing onsite basin area is 31.45 acres, of which 7.52 acres are impervious area. In the existing conditions, runoff from Basin 16 flows to conveyance swales and depression areas along both sides of I-75. The northern half of the bridge and the surrounding areas discharge to Basin 16. The southern half discharges to the adjacent basin (Basin 15).

Basin 16 is a Closed Basin; therefore, there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1704+95. There is an existing 30" cross drain near STA 1695+95 that conveys the runoff from the west side of the road to the roadside swales.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 16-3 on the east side of I-75 between Stations 1734+00 and 1740+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 76.0-feet, NAVD, near Station 1704+95. The preliminary pond results produced a peak stage elevation of 72.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### BASIN 17

Basin 17 is located north of Hwy 484 and extends approximately from STA 1722+00 to 1768+00 (4,600 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 56.94 acres, of which 9.29 acres are impervious area. Flood Compensation is estimated at 3.65 acres-ft. In the existing conditions, runoff from Basin 17 flows to conveyance swales along both sides of I-75.

Basin 17 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1756+80. There is an existing 30" cross drain near STA 1756+80 connecting the swales on both sides of the road.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 17-2 on the west side of I-75 between Stations 1742+50 and 1750+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 57.0-feet, NAVD, near Station 1756+80. The preliminary pond results produced a peak stage elevation of 53.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to

manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### BASIN 18

Basin 18 is located near Cross Seminole Trail and extends approximately from STA 1768+00 to 1792+00 (2,400 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 32.15 acres, of which 4.88 acres are impervious area. Flood Compensation is estimated at 2.97 acres-ft. In the existing conditions, runoff from Basin 18 flows to conveyance swales along both sides of I-75 and an offsite depression area on the west side of the road near STA 1788+00. Cross Seminole Trail bridges over I-75 near STA 1789+00. The bridge and a portion of the Trail are within onsite areas of Basin 18.

Basin 18 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 946+00. There are two (2) cross drains that convey the runoff from one side of the road to the roadside swales.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Based on our discussion with the District Drainage Office, the approach for both Basins 18 and 19 is to pursue Line Easements through SJRWMD and prevent significant impacts to the adjacent State TIFF Land associated Cross Seminole Trail. These Line Easements would essentially allow the FDOT to document the increased stormwater runoff created by the I-75 roadway widening that will be discharged directly through the existing TIFF Easement Line without impacting the preservation area within the TIFF property. This approach has been permitted in the past for other District 5 roadway project that also involved State TIFF property. However, the preferred pond site is currently Pond Alternative 18-4, which is located on the east side of I-75 between Stations 1768+00 and 1792+00. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site.

#### **BASIN 19**

Basin 19 is located northwest of Cross Seminole Trail and extends approximately from STA 1792+00 to 1821+50 (2,950 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 25.00 acres, of which 5.86 acres are impervious area. In the existing conditions, runoff from Basin 19 flows to conveyance swales along both sides of I-75.

Basin 19 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1802+90. There is an existing 24" cross drain near STA 1802+90 connecting the swales on both sides of the road.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Based on our discussion with the District Drainage Office, the approach for both Basins 18 and 19 is to pursue Line Easements through SJRWMD and prevent significant impacts to the adjacent State TIFF Land associated Cross Seminole Trail. These Line Easements would essentially allow the FDOT to document the increased stormwater runoff created by the I-75 roadway widening that will be discharged directly through the existing TIFF Easement Line without impacting the preservation area within the TIFF property. This approach has been permitted in the past for other District 5 roadway project that also involved State TIFF property. However, the preferred pond site is currently Pond Alternative 19-4, which

is located on the west side of I-75 between Stations 1803+00 and 1810+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site.

#### **BASIN 20**

Basin 20 extends approximately from STA 1821+50 to 1835+00 (1,350 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 9.30 acres, of which 2.73 acres are impervious area. In the existing conditions, runoff from Basin 20 flows to conveyance swales along both sides of I-75.

Basin 20 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1834+00. There is an existing 24" cross drain near STA 1825+90 connecting the swales on both sides of the road.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 20-2 on the east side of I-75 between Stations 1829+00 and 1834+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 87.0-feet, NAVD, near Station 1834+00. The preliminary pond results produced a peak stage elevation of 84.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 21**

Basin 21 extends approximately from STA 1835+00 to 1857+00 (2,200 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 23.42 acres, of which 4.44 acres are impervious area. Flood Compensation is estimated at 1.13 acres-ft. In the existing conditions, runoff from Basin 21 flows to conveyance swales along both sides of I-75.

Basin 21 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1837+00. There are two (2) existing cross drains connecting the swales on both sides of the road.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 21-1 on the east side of I-75 between Stations 1851+00 and 1863+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 88.0-feet, NAVD, near Station 1837+00. The preliminary pond results produced a peak stage elevation of 85.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

Basin 22 extends approximately from STA 1857+00 to 1889+00 (3,200 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 14.14 acres, of which 6.46 acres are impervious area. Flood Compensation is estimated at 0.48 acres-ft. In the existing conditions, runoff from Basin 22 flows to conveyance swales along both sides of I-75 and a linear median pond starting from approximately STA 1872+00. The linear pond continues north to the adjacent Basin 23.

Basin 22 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1875+00. There is an existing 30" cross drain near STA 1865+50 connecting the swales on both sides of the road.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 22-1 on the east side of I-75 between Stations 1874+00 and 1879+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 90.0-feet, NAVD, near Station 1875+00. The preliminary pond results produced a peak stage elevation of 87.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 23**

Basin 23 extends approximately from STA 1889+00 to 1905+00 (1,600 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 13.81 acres, of which 3.64 acres are impervious area. Flood Compensation is estimated at 1.61 acres-ft. In the existing conditions, runoff from Basin 23 flows to conveyance swales along both sides of I-75 and median linear ponds. There are 3 linear ponds within this basin that are separated by concrete berms.

Basin 23 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1898+90. There is an existing 24" cross drain connecting the swales on both sides of the road and the linear pond near STA 1898+90.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 23-1 on the east side of I-75 between Stations 1894+00 and 1898+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 87.0-feet, NAVD, near Station 1898+90. The preliminary pond results produced a peak stage elevation of 81.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

Basin 24 extends approximately from STA 1905+00 to 1925+00 (2,000 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 14.00 acres, of which 4.04 acres are impervious area. In the existing conditions, runoff from Basin 24 flows to conveyance swales along both sides of I-75 and a linear median pond. The bulk of the linear pond is in the adjacent Basin 23 and the northern part extends into Basin 24 for about 400 ft ending near STA 1909+00.

Basin 24 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1910+90. There is an existing 30" cross drain connecting the swales on both sides of the road near STA 1910+90.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 24-1 on the east side of I-75 between Stations 1911+00 and 1918+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 87.0-feet, NAVD, near Station 1910+90. The preliminary pond results produced a peak stage elevation of 82.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 25**

Basin 25 extends approximately from STA 1925+00 to 1940+80 (1,580 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 10.92 acres, of which 3.20 acres are impervious area. Flood Compensation is estimated at 1.79 acres-ft. In the existing conditions, runoff from Basin 25 flows to conveyance swales along both sides of I-75 and a depression area near STA 1928+00.

Basin 25 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1938+00. There is an existing 30" cross drain connecting the swales on both sides of the road near STA 1937+90.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 25-1/26-1 on the east side of I-75 between Stations 1935+00 and 1941+50 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 87.0-feet, NAVD, near Station 1938+00. The preliminary pond results produced a peak stage elevation of 78.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

Basin 26 extends approximately from STA 1940+80 to 1963+60 (2,280 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 15.74 acres, of which 4.61 acres are impervious area. There is a Rest Area on both sides of the road from near STA 1118+00 to 1146+00. In the existing conditions, runoff from Basin 26 flows to conveyance swales along both sides of I-75 and inline ponds serving both Basin 26 and the Rest Area. Most of the Rest Area lies within the offsite areas. Only the Rest Area's parking lot closest to the road is within Basin 26 onsite areas.

There are 4 inline ponds serving both this basin and the Rest Area: 2 ponds on each side of the road. The inline ponds are near STA 1943+95 and 1954+95 on the east side, and STA 1953+95 and 1964+95 on the west side.

Basin 26 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1972+75. There is an 18" cross drain that conveys the runoff from the west side of the road to the roadside swales near STA 1951+95.

Three (3) pond site alternatives were evaluated on the east side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. As noted in Basin 25, Pond Alternative 25-1/26-1 on the east side of I-75 between Stations 1935+00 and 1941+50 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Since this is a shared basin and combines with Basin 25, the pond HGL of 78.0-feet, NAVD, is well below the low edge of pavement, which is approximately 87.0-feet, NAVD.

#### **BASIN 27**

Basin 27 extends approximately from STA 1963+60 to 1993+00 (2,940 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 13.88 acres, of which 4.07 acres are impervious area. Flood Compensation is estimated at 1.71 acres-ft. In the existing conditions, runoff from Basin 27 flows to conveyance swales along both sides of I-75.

Basin 27 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 1965+75. There is an existing 30" cross drain connecting the swales on both sides of the road near STA 1976+90.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 27-3 on the east side of I-75 between Stations 1974+00 and 1980+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 75.0-feet, NAVD, near Station 1965+75. The preliminary pond results produced a peak stage elevation of 71.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

Basin 28 extends approximately from STA 1993+00 to 2016+20 (2,320 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 16.08 acres, of which 4.72 acres are impervious area. Flood Compensation is estimated at 2.23 acres-ft. In the existing conditions, runoff from Basin 28 flows to conveyance swales along both sides of I-75.

Basin 28 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 2001+50. There is an existing 24" cross drain connecting the swales on both sides of the road near STA 2001+50. Additionally, there are two (2) 20" cross drains that convey the runoff from the west side of the road to the roadside swales.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 28-1 on the east side of I-75 between Stations 2001+00 and 2007+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 79.0-feet, NAVD, near Station 2001+50. The preliminary pond results produced a peak stage elevation of 78.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 29**

Basin 29 extends approximately from STA 2016+20 to 2043+00 (2,680 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from east side of the I-75. The existing onsite basin area is 18.36 acres, of which 5.38 acres are impervious area. Flood Compensation is estimated at 2.15 acres-ft. In the existing conditions, runoff from Basin 29 flows to conveyance swales along both sides of I-75.

Basin 28 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 2016+20. There is an existing 24" cross drain connecting the swales on both sides of the road near STA 2029+00.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 29-1 on the east side of I-75 between Stations 2013+00 and 2017+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 80.0-feet, NAVD, near Station 2016+20. The preliminary pond results produced a peak stage elevation of 79.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

Basin 30 extends approximately from STA 2043+00 to 2091+00 (4,800 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 33.06 acres, of which 9.70 acres are impervious area. Flood Compensation is estimated at 5.19 acres-ft. In the existing conditions, runoff from Basin 30 flows to conveyance swales and low-lying areas along both sides of I-75.

Basin 30 is a Closed Basin; therefore, there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 2091+00. There is an existing cross drain connecting the swales on both sides of the road near STA 2052+00 that consists of an 18" pipe on the east side and a 24" pipe on the west side.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 30-3 on the west side of I-75 between Stations 2072+00 and 2080+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 82.0-feet, NAVD, near Station 2091+00. The preliminary pond results produced a peak stage elevation of 78.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **BASIN 31**

Basin 31 extends approximately from STA 2091+00 to 2126+80 (3,580 ft). Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 24.69 acres, of which 7.24 acres are impervious area. Flood Compensation is estimated at 11.35 acres-ft. In the existing conditions, runoff from Basin 31 flows to conveyance swales along both sides of I-75.

Basin 31 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 2106+80. There is an existing 36" cross drain connecting the swales on both sides of the road near STA 2106+80.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 31-1 on the west side of I-75 between Stations 2108+00 and 2118+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 75.0-feet, NAVD, near Station 2106+80. The preliminary pond results produced a peak stage elevation of 73.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

Basin 32 extends approximately from STA 2126+80 to 2159+00 (3,220 ft). Basin 32 contains half of I-75/SR 200 interchange and I-75/SW 43<sup>rd</sup> St. Runoff contributing areas from this basin consists of the roadway right-of-way between those stations and offsite contributions from both sides of the I-75. The existing onsite basin area is 31.28 acres, of which 6.51 acres are impervious area. Flood Compensation is estimated at 9.24 acres-ft. In the existing conditions, runoff from Basin 32 flows to conveyance swales along both sides of I-75. The northern half of the interchange discharges to the adjacent basin (Basin 33).

There are 2 inline ponds on the east side of I-75 ramp to SR 200 near STA 2146+00 and STA 2150+00 that receive stormwater discharge from the road and are within this basin's onsite areas.

Basin 32 is a Closed Basin therefore there is no positive outfall for this basin. The low point along the existing edge of pavement is located near STA 2146+50. There is an existing 24" cross drain connecting the swales on both sides of the road near STA 2145+80.

Three (3) pond site alternatives were evaluated on either side of I-75 to address the stormwater management needs for this basin. The preliminary sizing calculations are provided in Appendix B of this Report. Pond Alternative 32-3 on the east side of I-75 between Stations 2139+00 and 2144+00 is the recommended alternative. Please refer to Table 2 for the Pond Siting Evaluation Matrix and the parameters used to assess each potential pond site. Similarly, the low edge of pavement for this basin is approximately elevation 76.0-feet, NAVD, near Station 2146+50. The preliminary pond results produced a peak stage elevation of 74.0-feet, NAVD. Therefore, the proposed pond has the hydraulic capacity to manage the stormwater runoff from this basin and minimizes the potential for the Hydraulic Grade Line (HGL) to directly cause roadway flooding.

#### **Floodplain Considerations**

We have reviewed the Federal Emergency Management Agency's (FEMA) National Flood Hazard Layer (NFHL) Viewer and noted numerous designated flood hazard areas throughout the project limits. The Flood Insurance Rate Maps (FIRMs) are dated either 2013 or 2017 and the designations are primary Zone A (areas prone to flooding with a Base Flood Elevation and Zone AE (area with established Base Flood Elevations). For the Interim Auxiliary Lane roadway typical section, all floodplain impacts will be mitigated for within the existing right-of-way through compensatory volume provided within the roadway ditches throughout the I-75 project corridor. Whereas the ultimate roadway typical section is expected to impact all designated floodplain areas identified within the I-75 right-of-way. The floodplain compensation will be sized to provide equivalent flood volumes in a "cup to cup" manner to ensure the existing impacts maintain the historic stages that exist throughout the corridor. All floodplain compensation will be accomplished within the preferred pond site alternatives associated with each encroachment. The anticipated floodplain impacts were estimated using the FEMA floodplain GIS layers and 2' contour maps, and volumes will be replaced by balancing cut/fill either within the R/W, or by the addition of equivalent compensatory volume within the proposed stormwater management facilities. The floodplain

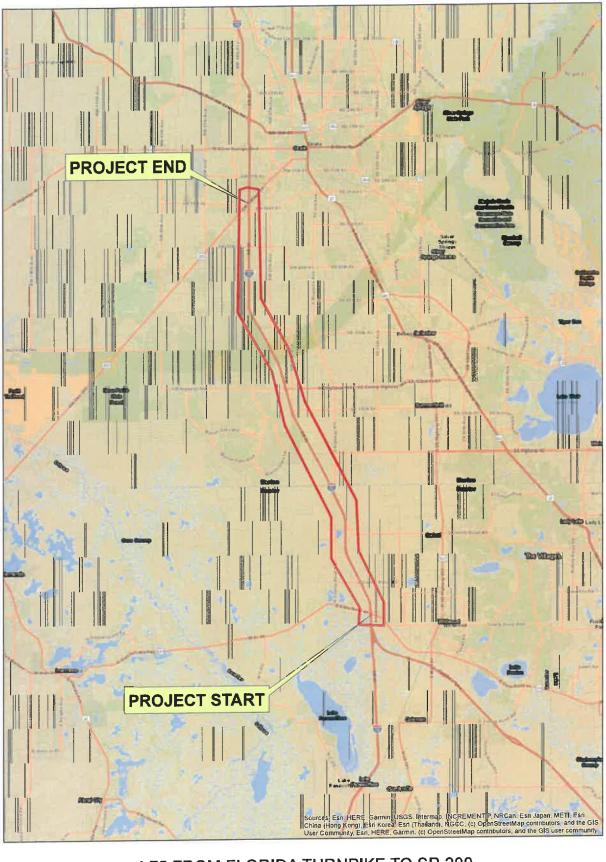
impacts are identified with "Cross Hatching" on the FEMA Floodplain/Soils Maps in Appendix C and summarized in the following table.

Finally, a modified Location Hydraulics Report will be prepared under separate cover in support of the proposed roadway improvements to I-75. Modifications to existing drainage structures such as extending cross drains and median drains included in this project will result in an insignificant change in their capacity to carry floodwater. These modifications will cause minimal increases in flood heights and flood limits which will not result in any significant adverse impacts on the natural and beneficial floodplain values or any significant change in flood risks or damage. There will be no significant change in the potential for interruption or termination of emergency service or emergency evacuation routes as the result of modifications to existing drainage structures. Therefore, it has been determined that this encroachment is not significant.

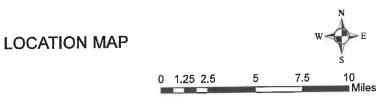
| Pond Alt. | Predominate | Hydraulic      | Floodplain  | Wetland | Construction | Right-of-Way | Pond |
|-----------|-------------|----------------|-------------|---------|--------------|--------------|------|
|           | Hydrologic  | Considerations | Involvement | Impacts | Costs        | Costs        | Rank |
|           | Soil Group  |                |             |         |              |              |      |
|           | (HSG)       |                |             |         |              |              |      |
| 9-1       | A           | 2              | 1           | 1       | 1            | 3            | -    |
| 9-2       | A           | 1              | 1           | 1       | 1            | 2            | 1    |
| 9-3       | A           | 2              | 1           | 1       | 1            | 3            | -    |
| 10-1      | А           | 2              | 1           | 1       | 1            | 3            | -    |
| 10-2      | А           | 1              | 1           | 1       | 1            | 3            | -    |
| 10-3      | А           | 1              | 1           | 1       | 1            | 1            | 1    |
| 11-1      | А           | 1              | 1           | 1       | 1            | 1            | 1    |
| 11-2      | А           | 1              | 1           | 1       | 2            | 2            | -    |
| 11-3      | А           | 1              | 1           | 1       | 2            | 2            | -    |
| 12-1      | А           | 1              | 1           | 1       | 1            | 1            | 1    |
| 12-2      | А           | 1              | 1           | 1       | 2            | 2            | -    |
| 12-3      | А           | 1              | 1           | 1       | 1            | 2            | -    |
| 13-1      | А           | 1              | 1           | 1       | 2            | 1            | 1    |
| 13-2      | А           | 1              | 1           | 1       | 2            | 2            | -    |
| 13-3      | А           | 1              | 1           | 1       | 2            | 2            | -    |
| 14-1      | А           | 1              | 1           | 1       | 2            | 2            | -    |
| 14-2      | А           | 2              | 2           | 1       | 2            | 3            | -    |
| 14-3      | А           | 1              | 1           | 1       | 1            | 3            | -    |
| 14-1/15-1 | А           | 1              | 1           | 1       | 2            | 2            | 1    |
| 14-3/15-3 | А           | 1              | 1           | 1       | 2            | 2            | -    |
| 15-1      | C           | 2              | 1           | 1       | 2            | 2            | -    |
| 15-2      | C           | 2              | 1           | 1       | 2            | 3            | -    |
| 15-3      | С           | 2              | 1           | 1       | 1            | 3            | -    |
| 16-1      | A           | 1              | 1           | 1       | 2            | 3            | -    |
| 16-2      | A           | 1              | 1           | 1       | 2            | 3            | -    |
| 16-3      | А           | 1              | 1           | 1       | 1            | 2            | 1    |
| 17-1      | А           | 2              | 1           | 1       | 2            | 3            | -    |

Table 2 – Pond Evaluation Matrix

| 17-2          | A   | 2 | 1 | 1 | 2               | 3 | 1 |
|---------------|-----|---|---|---|-----------------|---|---|
| 17-3          | А   | 1 | 1 | 1 | 2               | 3 | - |
| 18-1          | А   | 2 | 1 | 1 | 2               | 3 | - |
| 18-2          | А   | 1 | 1 | 1 | 2               | 3 | - |
| 18-3          | А   | 1 | 1 | 1 | 2               | 3 | - |
| 18-4          | А   | 1 | 1 | 1 | 1               | 1 | 1 |
| 18            | А   |   |   |   | State TIFF Land |   | - |
| 19            | А   |   |   |   | State TIFF Land |   | - |
| 19-1          | А   | 2 | 2 | 2 | 2               | 3 | - |
| 19-2          | А   | 1 | 1 | 1 | 2               | 3 | - |
| 19-3          | А   | 1 | 1 | 1 | 2               | 3 | - |
| 19-4          | A   | 1 | 1 | 1 | 1               | 1 | 1 |
| 20-1          | A   | 1 | 1 | 1 | 2               | 3 | - |
| 20-2          | A   | 1 | 1 | 1 | 2               | 1 | 1 |
| 20-3          | A   | 1 | 1 | 1 | 1               | 2 | - |
| 21-1          | A   | 1 | 1 | 1 | 1               | 2 | 1 |
| 21-2          | A   | 1 | 1 | 1 | 2               | 3 | - |
| 21-3          | A   | 1 | 2 | 2 | 2               | 3 | _ |
| 22-1          | A   | 1 | 1 | 1 | 1               | 2 | 1 |
| 22-2          | A   | 1 | 1 | 1 | 2               | 3 | - |
| 22-3          | A   | 1 | 1 | 1 | 2               | 2 | - |
| 23-1          | A   | 1 | 1 | 1 | 2               | 1 | 1 |
| 23-2          | A   | 1 | 1 | 1 | 3               | 3 | - |
| 23-3          | A   | 1 | 1 | 1 | 2               | 3 | _ |
| 23-3          | A   | 1 | 1 | 1 | 1               | 2 | 1 |
| 24-2          | A   | 1 | 1 | 1 | 3               | 3 | - |
| 24-3          | A   | 1 | 1 | 1 | 2               | 2 | - |
| 25-1          | A   | 1 | 1 | 1 | 1               | 2 | - |
| 25-2          | A   | 1 | 1 | 1 | 1               | 2 | - |
| 25-3          | A   | 1 | 1 | 1 | 3               | 3 | - |
| 25-1/26-1     | A   | 1 | 1 | 1 | 2               | 2 | 1 |
| 26-1          | A   | 1 | 1 | 1 | 1               | 2 | - |
| 26-2          | A   | 1 | 1 | 1 | 1               | 3 | _ |
| 26-3          | A   | 2 | 1 | 1 | 1               | 1 | _ |
| 27-1          | A   | 1 | 2 | 1 | 2               | 3 | _ |
| 27-2          | A   | 1 | 2 | 1 | 2               | 2 | _ |
| 27-3          | A   | 1 | 2 | 1 | 1               | 2 | 1 |
| 28-1          | A   | 1 | 2 | 1 | 2               | 2 | 1 |
| 28-2          | A   | 1 | 1 | 1 | 2               | 3 | - |
| 28-3          | A   | 1 | 2 | 1 | 2               | 3 | - |
| 28-3          | A   | 1 | 2 | 1 | 2               | 2 | 1 |
| 29-2          | A A | 1 | 1 | 2 | 2               | 3 | - |
| 29-2          | A A | 1 | 1 | 1 | 2               | 3 | - |
| 30-1          |     | 1 | 1 | 2 | 2               | 2 |   |
| 30-1<br>30-1A | A   | 1 | 2 | 1 | 1               | 2 | - |
|               | A   |   |   |   | 2               |   | - |
| 30-1B         | A   | 1 | 1 | 1 | 2               | 2 | - |

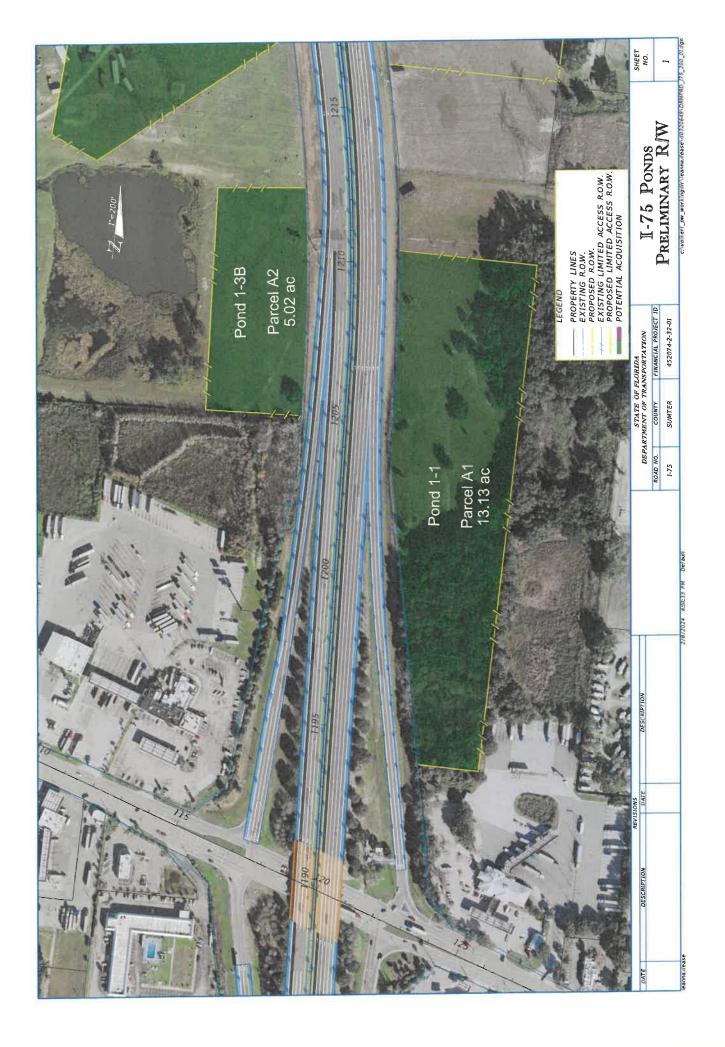

| 30-2 | А | 1 | 2 | 2 | 2 | 2 | - |
|------|---|---|---|---|---|---|---|
| 30-3 | А | 1 | 1 | 1 | 2 | 2 | 1 |
| 31-1 | А | 1 | 1 | 1 | 2 | 2 | 1 |
| 31-2 | А | 1 | 2 | 2 | 2 | 2 | - |
| 31-3 | А | 1 | 1 | 1 | 2 | 3 | - |
| 32-1 | А | 1 | 2 | 1 | 2 | 3 | - |
| 32-2 | А | 1 | 1 | 1 | 2 | 3 | - |
| 32-3 | А | 1 | 2 | 1 | 1 | 2 | 1 |

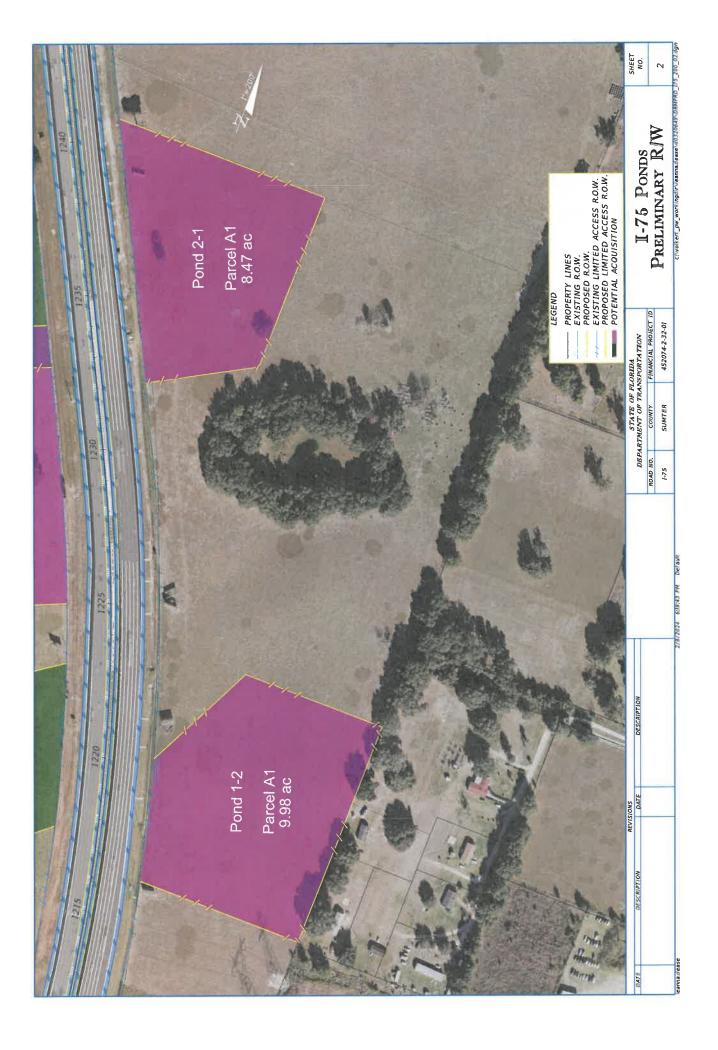
#### Matrix Legend:

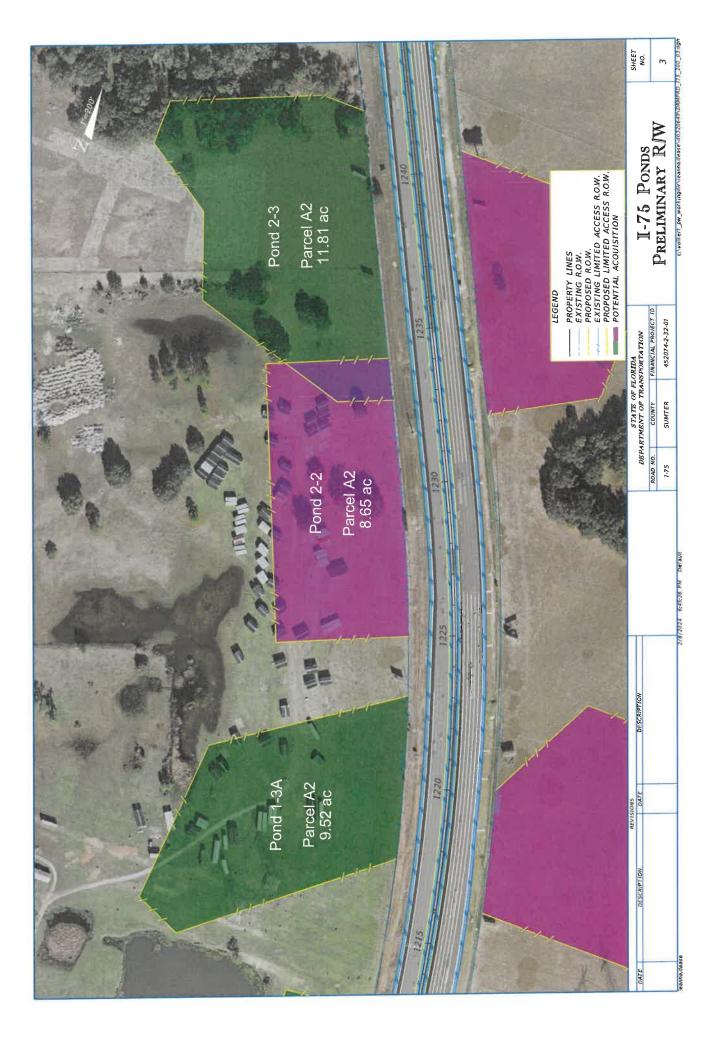

<u>**Rating 1**</u> – "Best Case" conditions with little influence on either the environmental or costs associated with the Pond Site Alternative.

<u>**Rating 2**</u> – Anticipate environmental impacts and additional costs above the standard for the selected Pond Site Alternative.

<u>**Rating 3**</u> – Impacts to the hydraulics and environmental conditions will require significant mitigation. Similarly, construction and right-of-way costs are expected to double as compared to the standard costs.

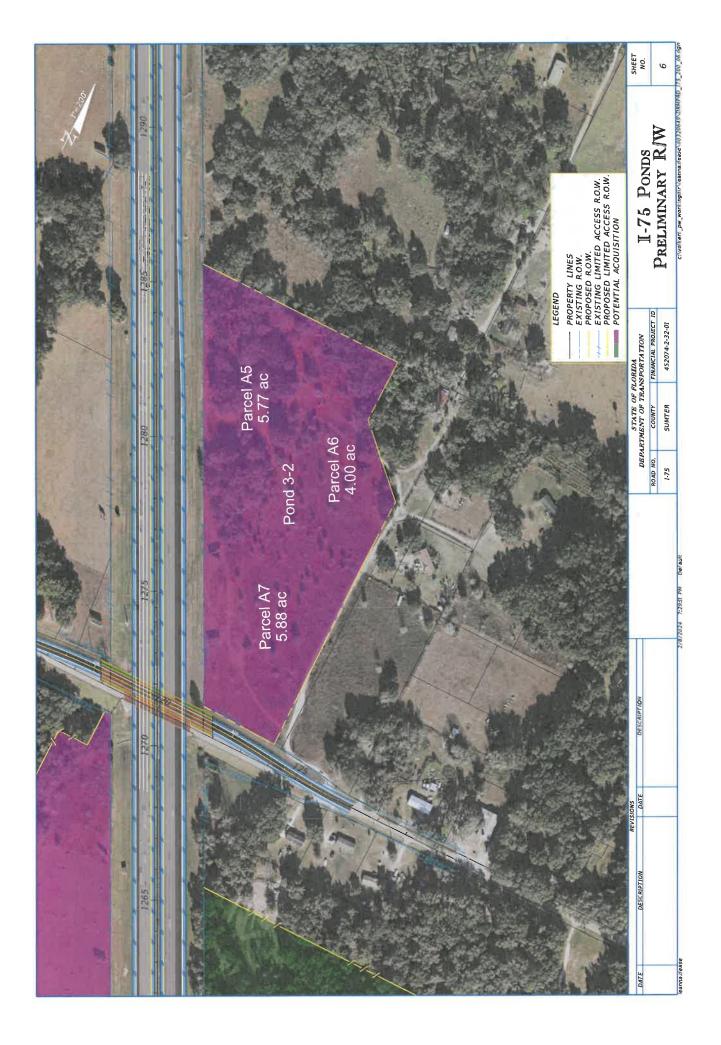


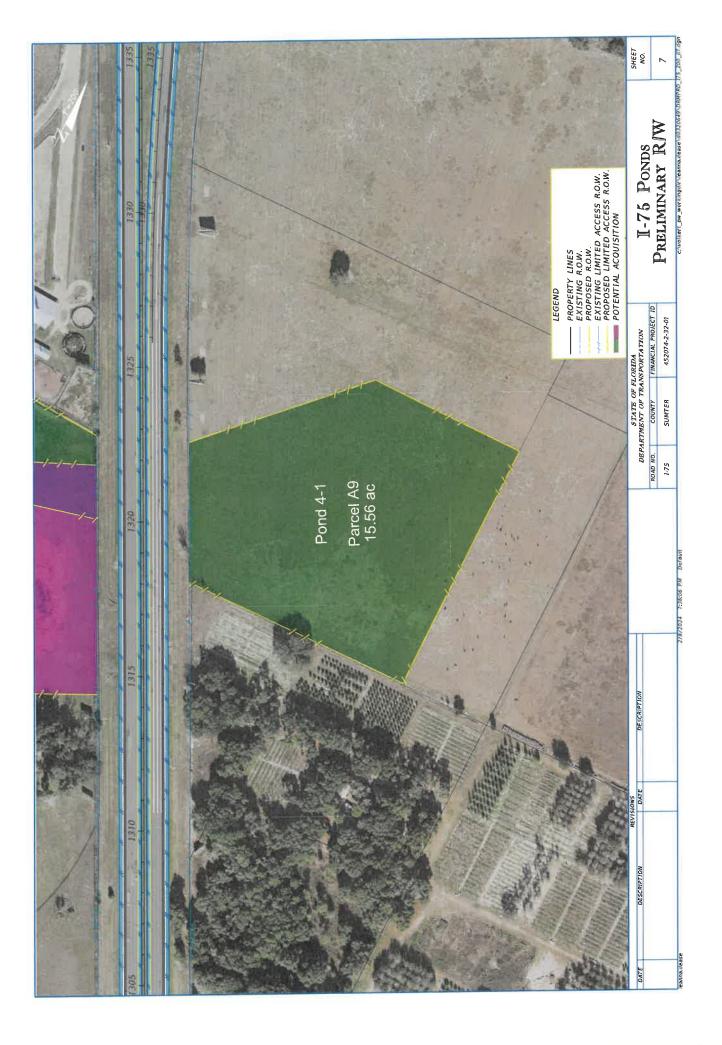


I-75 FROM FLORIDA TURNPIKE TO SR 200




APPENDIX A I-75 Ponds Preliminary Right-of-Way



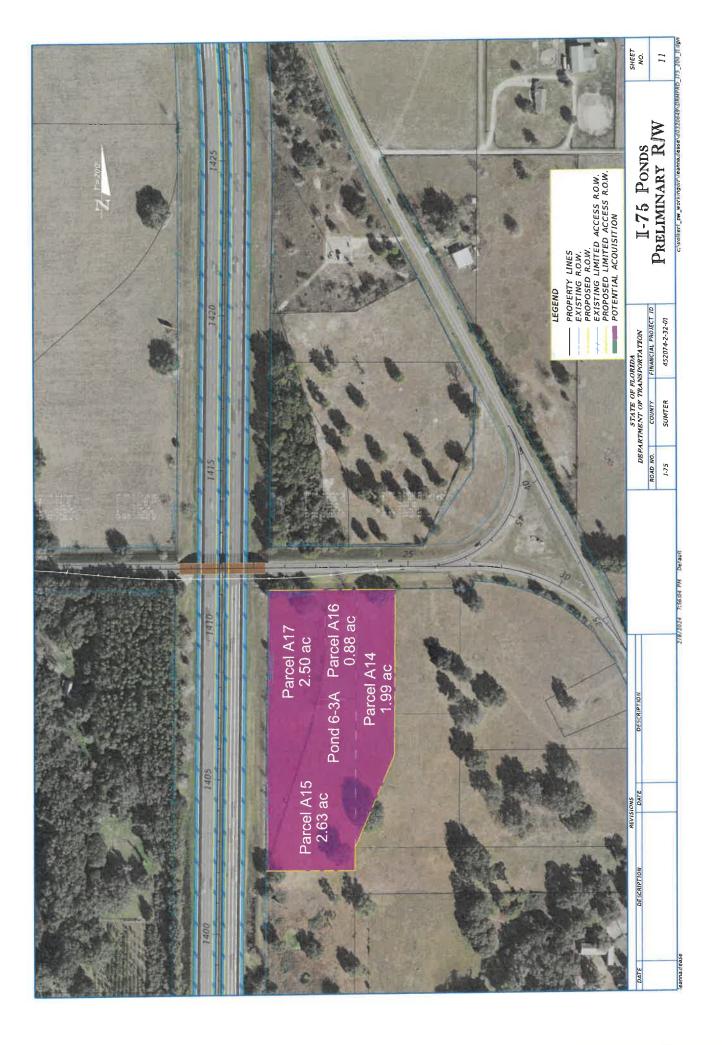




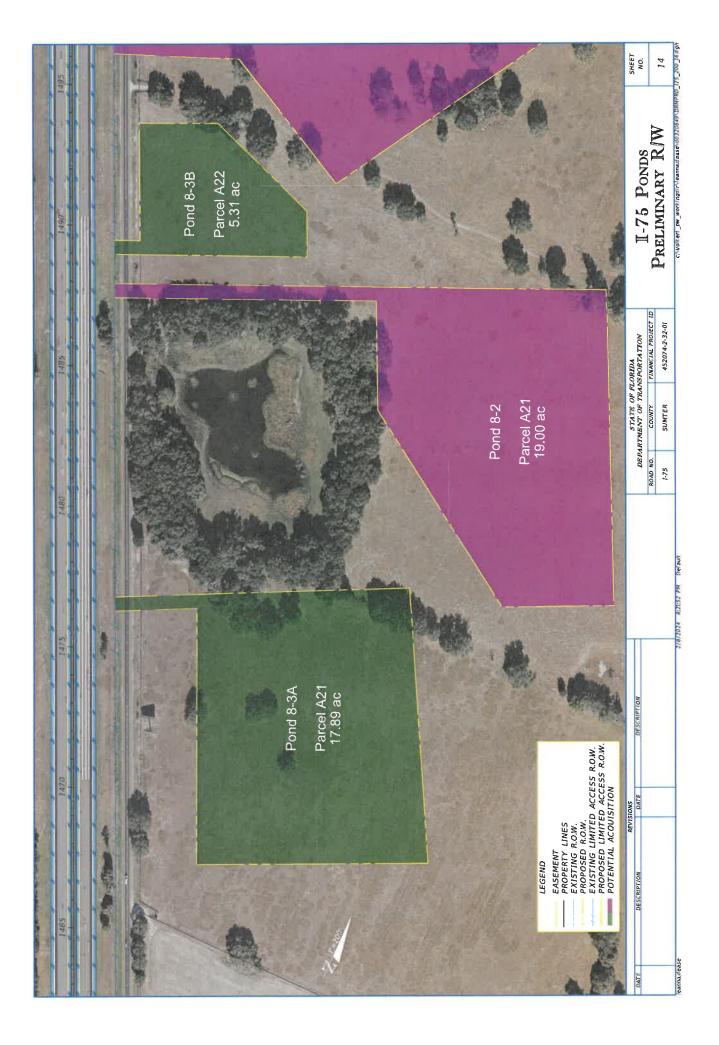




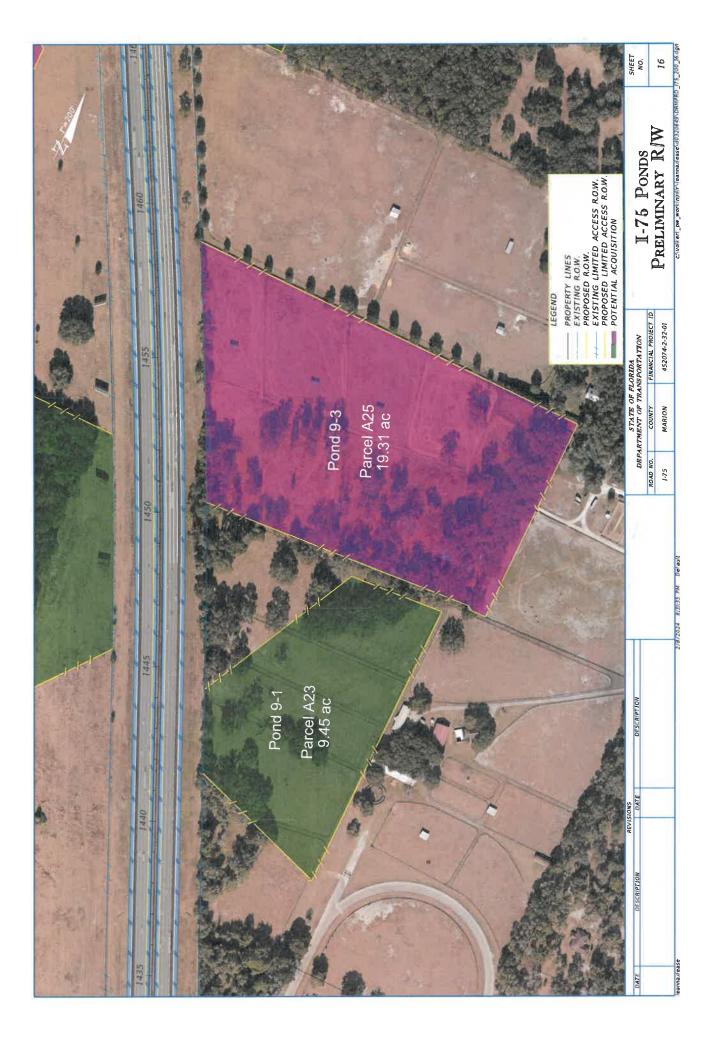



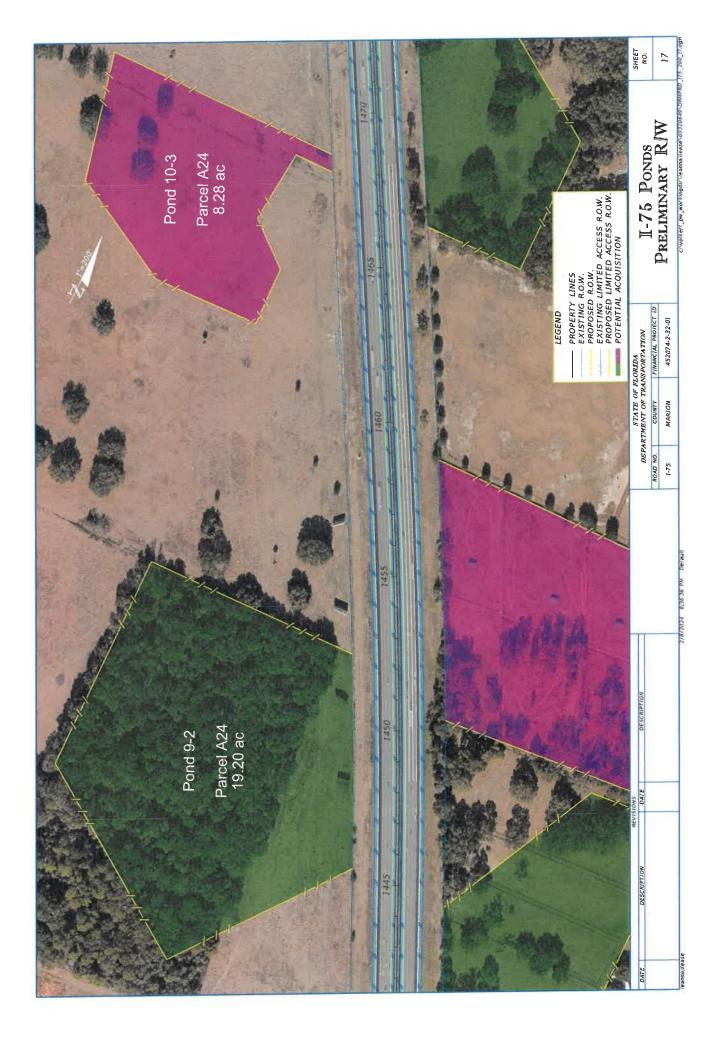


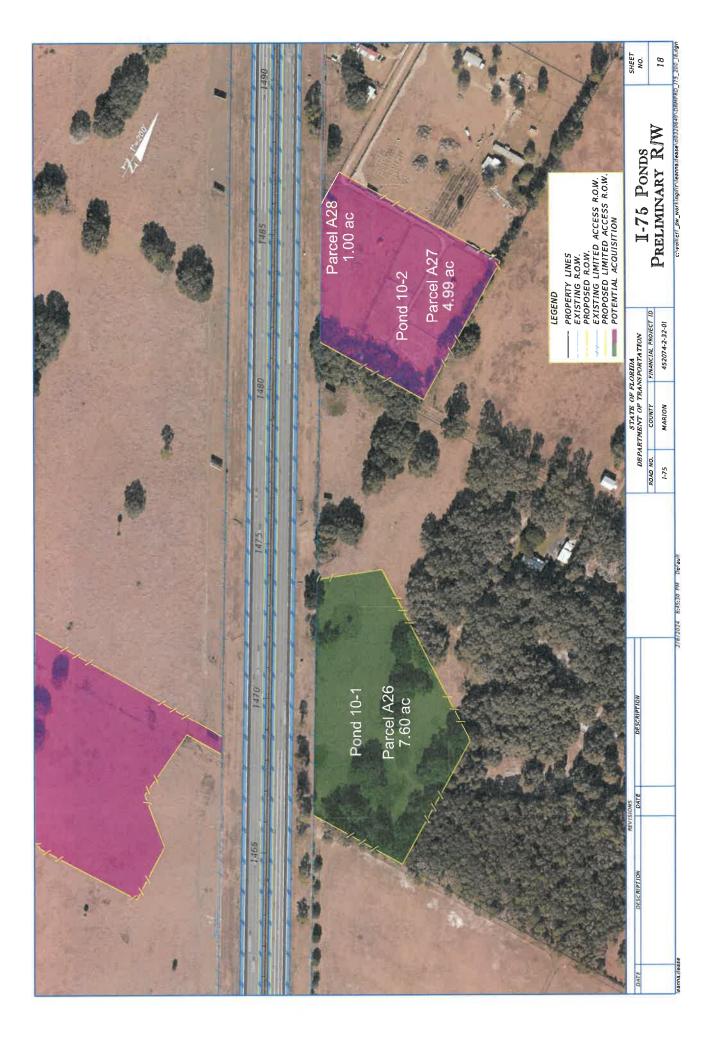




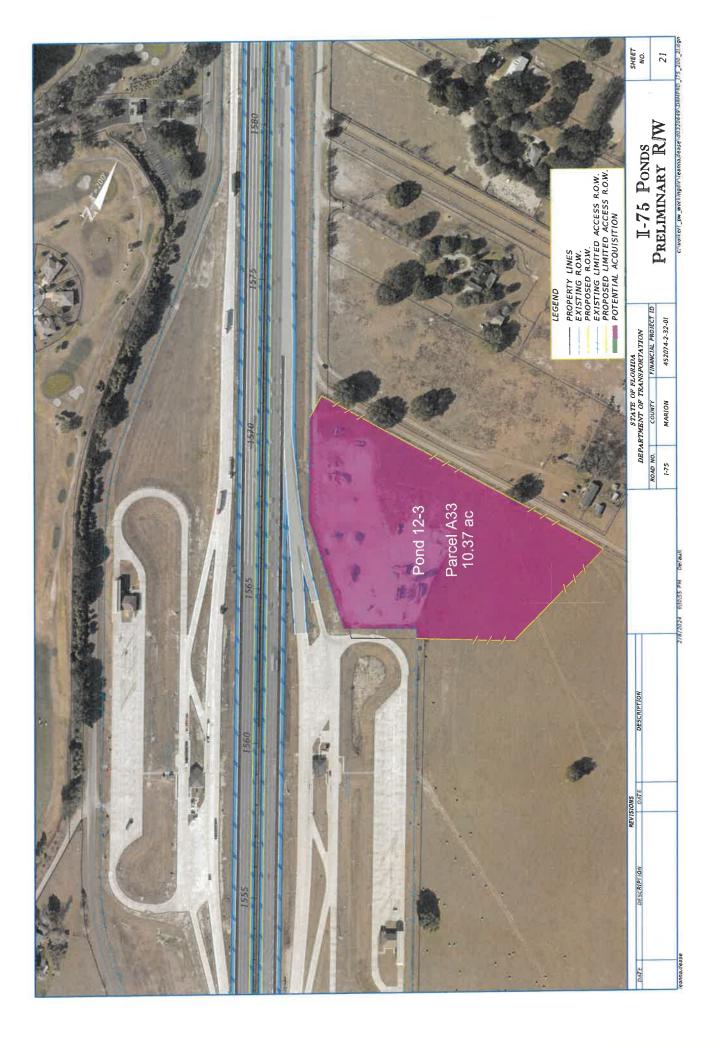







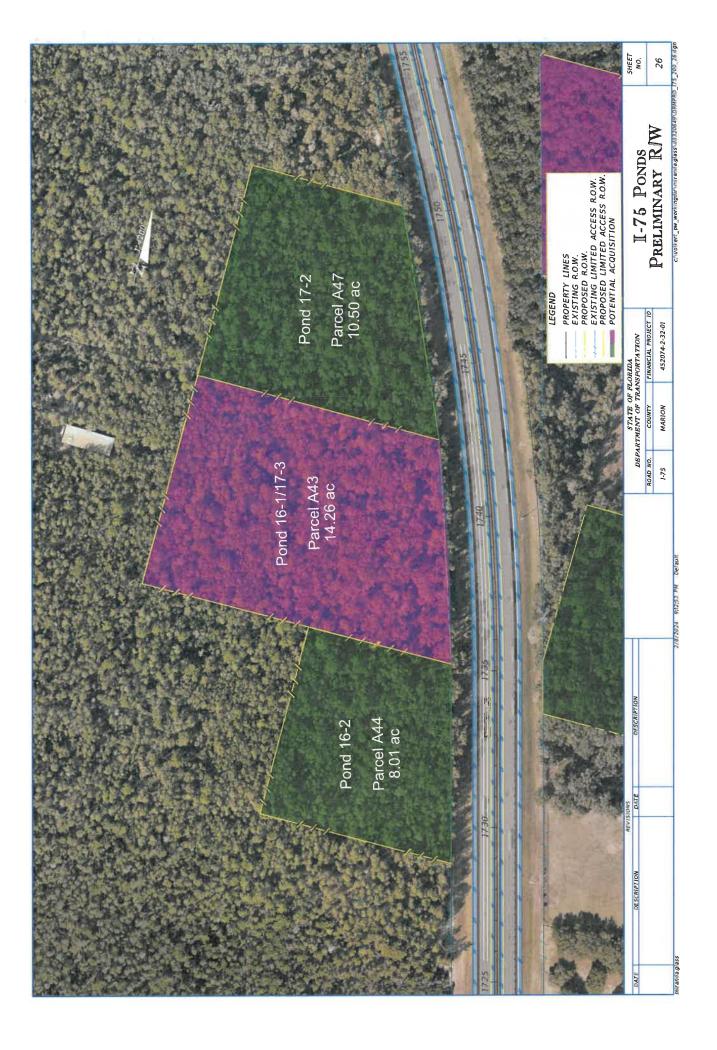





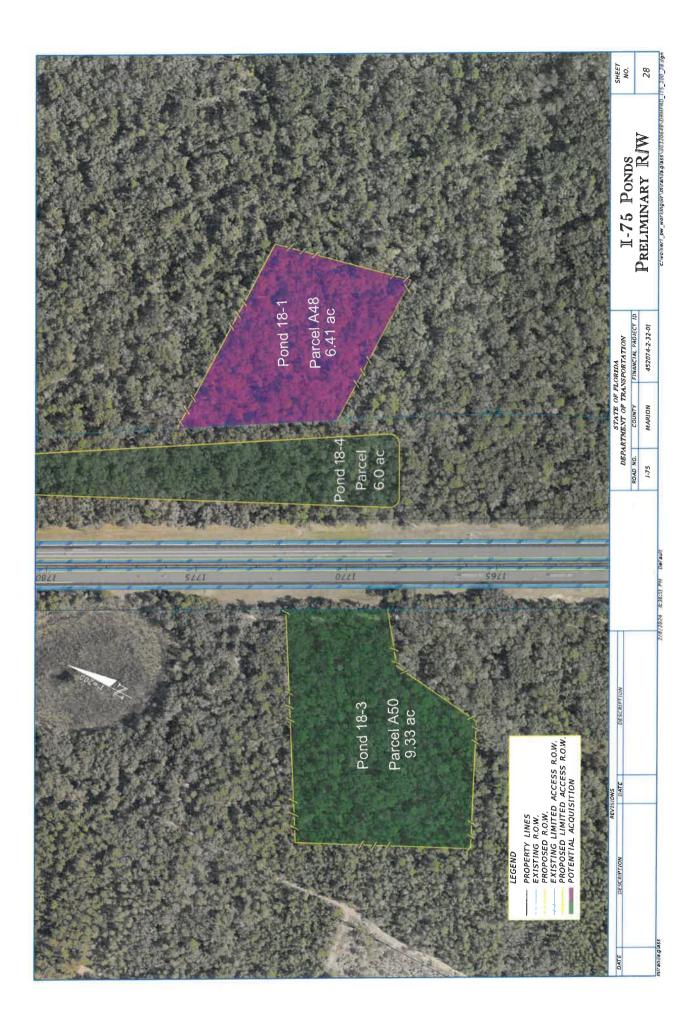


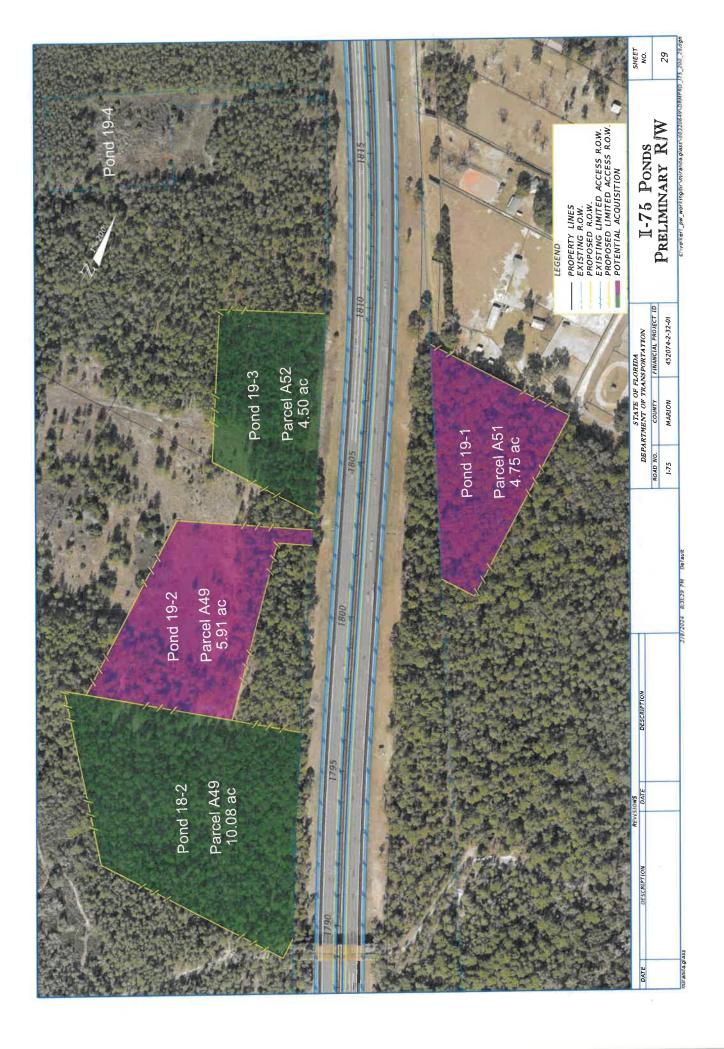


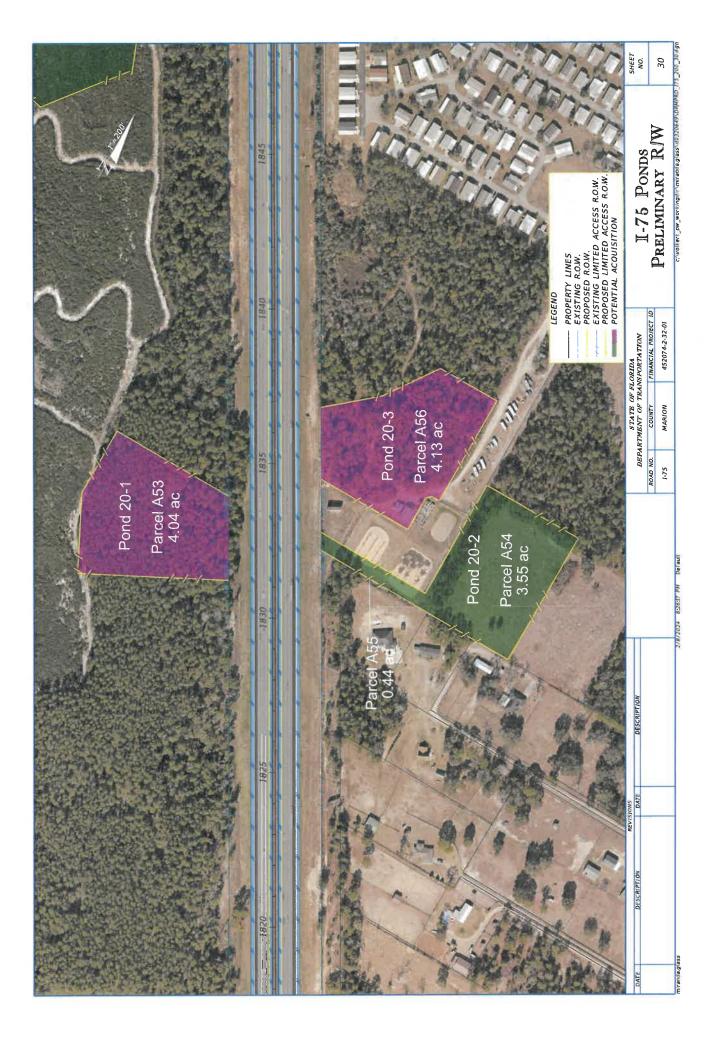


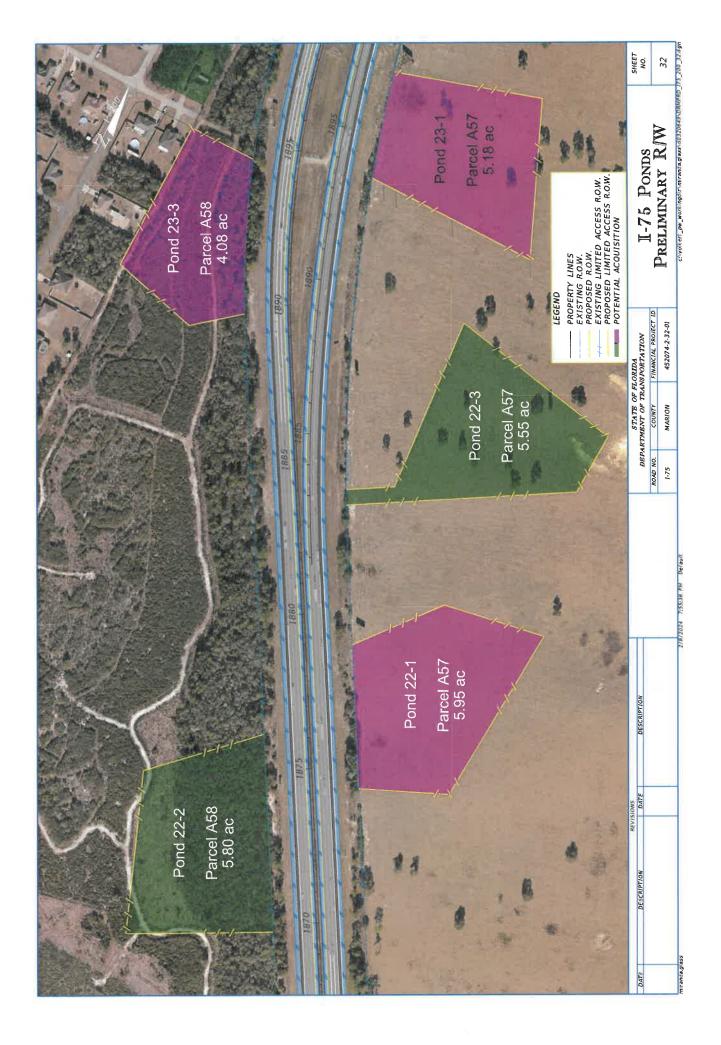


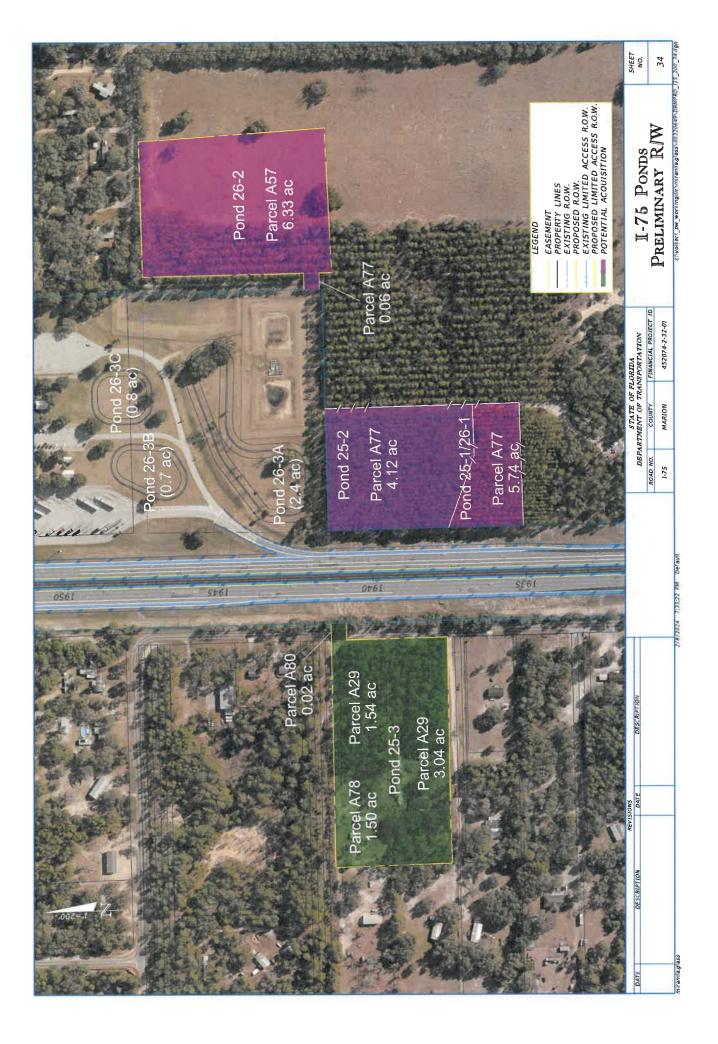



































APPENDIX B Pond Sizing Worksheets



# POND SIZING CALCULATIONS I-75 Pond Siting FPID: 452074-2-32-01

|                                                     |                                                                                                 | Р     | ond Name:<br>Date:      | 9-1<br>2/28/ | 2024                    |          | Full                                                          | Туріса              | al Section Wi | dth   |
|-----------------------------------------------------|-------------------------------------------------------------------------------------------------|-------|-------------------------|--------------|-------------------------|----------|---------------------------------------------------------------|---------------------|---------------|-------|
| PRE-DEVELOPMENT RU                                  | JNOFF PA                                                                                        | RAME  | TERS                    |              |                         |          |                                                               |                     |               |       |
| Onsite Basin Area                                   | 38.22                                                                                           | ac    |                         |              |                         |          | E                                                             | Basin Lim           | its           |       |
| Pond Parcel Area                                    | 8.50                                                                                            | ac    |                         |              |                         |          | 1409+00                                                       | to                  | 1464+00       |       |
| Total Area                                          | 46.72                                                                                           | ac    |                         |              |                         |          |                                                               |                     | umter/Mario   |       |
| Iotal Alea                                          |                                                                                                 |       |                         |              | Lines that              | alters t | he I-75 Sta                                                   | tioning             | as follows: S | TA    |
| CURVE NUMBER CALCUA                                 | TION:                                                                                           |       |                         |              | 1525+64.0               | 0 (AH),  | /1422+88.9                                                    | 8(BK)               |               |       |
| TYPE A SOILS TYPE B SOILS TYPE C SOILS TYPE D SOILS |                                                                                                 |       |                         |              |                         | ILS      | CN*A                                                          | TOTAL AREA          |               |       |
| LAND USE                                            | AREA (ft <sup>2</sup> )                                                                         | CN    | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> )                                       | CN                  |               |       |
| Impvervious                                         | 11.11                                                                                           | 98    |                         |              |                         |          |                                                               |                     | 1088.89       | 11.11 |
| Grass                                               | 27.11                                                                                           | 39    |                         |              |                         |          |                                                               |                     | 1057.25       | 27.11 |
| Pond Site Pre Condition                             | 8.50                                                                                            | 39    |                         |              |                         |          |                                                               | +                   | 331.50        | 8.50  |
|                                                     |                                                                                                 |       |                         |              |                         |          |                                                               |                     | 0.00          | 0.00  |
|                                                     |                                                                                                 |       |                         | -            |                         | -        |                                                               |                     | 0.00          | 0.00  |
|                                                     |                                                                                                 |       |                         |              |                         |          |                                                               |                     | 0.00          | 0.00  |
|                                                     |                                                                                                 |       |                         |              |                         | +        |                                                               | ++                  | 0.00          | 0.00  |
| TOTALS                                              | 46.72                                                                                           |       | 0                       |              | 0                       | -        | 0                                                             |                     | 2477.64       | 46.72 |
| TUTALS                                              | 40.72                                                                                           | 1     |                         |              | Ŭ                       |          | WEIGH                                                         | TED CN              |               | 53    |
| Runo                                                | <b>yr-240hr (P) =</b><br>NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S) | 9.5   |                         |              |                         |          | ntial Abstracti<br>S = (1000/<br>ted Runoff Vo<br>Peak Volume | CN) - 10<br>plume = | 8.9<br>37.15  | ac-ft |
|                                                     |                                                                                                 |       | 4575DC                  |              |                         |          |                                                               |                     |               |       |
| POST-DEVELOPMENT                                    |                                                                                                 | 10    | IEIEKS                  |              |                         |          |                                                               | Basin Lim           | 18-           |       |
| Onsite Basin Area                                   | 38.27                                                                                           | ac ac |                         |              |                         |          | E                                                             | sasin Lim           |               |       |
| Pond Parcel Area                                    | 8.50                                                                                            | ac    |                         |              |                         |          | 1409+00                                                       | to                  | 1464+00       |       |
| Total Area                                          | 46.72                                                                                           | 2 ac  |                         |              |                         |          |                                                               |                     |               |       |
| CURVE NUMBER CALCUA                                 | TION:                                                                                           |       |                         |              |                         |          |                                                               |                     |               |       |

| Onsite Basin Area | 38.22 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 8.50  | ac |
| Total Area        | 46.72 | ac |

#### CUR

| LAND USE               | TYPE A SO               | ILS | TYPE B SO               | ILS      | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----------|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         | TOTALTAN   |
| Impervious             | 34.09                   | 98  |                         |          |                         |    |                         |        | 3340.91 | 34.09      |
|                        | 4.13                    | 39  |                         |          |                         |    |                         |        | 161.03  | 4.13       |
| Grass                  |                         | 39  |                         |          |                         |    |                         |        | 136.50  | 3.50       |
| Pond Site (Pervious)   | 3.50                    |     |                         |          |                         |    |                         |        | 500.00  | 5.00       |
| Pond Site (Impervious) | 5.00                    | 100 |                         |          |                         |    |                         | +      | 0.00    | 0.00       |
|                        |                         | ++  |                         | +        |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |          |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |          |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 46.72                   | + + | 0                       |          | 0                       |    | 0                       | Î      | 4138.44 | 46.72      |
| TOTALS                 | 40.72                   |     |                         | <u> </u> |                         |    | WEIGH                   | TED CN |         | 89         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.4 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

Estimated Runoff Volume = 60.13 ac-ft Peak Volume = A x Q

## POND SIZING CALCULATIONS I-75 Pond Siting FPID: 452074-2-32-01

Pond Name: 9-1 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |           | 38.22 ac        |                       |
|------------------------------------------------|-----------|-----------------|-----------------------|
| Weighted C                                     |           | 0.87            |                       |
| Total Impervious                               | 0.95      | 34.09 ac        |                       |
| Total Pervious                                 | 0.20      | 4.13 ac         |                       |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |           | N               |                       |
| Required Treatment (Runoff from 1" Rainfall)   |           | 2.77 ac-ft      | hichever is greater)  |
| Required Treatment (1/2" over Area)            |           | 1.59 ac-ft 🖵 💜  | incriever is greatery |
|                                                |           | 2.77 ac-ft      |                       |
|                                                |           |                 |                       |
| 2) Estimated Peak Attenuation Volume (EPAV):   |           |                 |                       |
| Existing Runoff Volume                         |           | 37.15 ac-ft     |                       |
| Proposed Runoff Volume                         |           | 60.13 ac-ft     |                       |
| EPAV = Proposed Runoff - Existing Runoff Volum | e         | 22.98 ac-ft     |                       |
|                                                |           |                 |                       |
| Floodplain Com                                 | pensation | 0.00 ac-ft      |                       |
| TOTAL                                          | STORAGE   | 22.98 ac-ft     |                       |
| 3) Estimated Pond Configuration:               |           |                 |                       |
| Maintenance Berm Width                         | 20.0 ft   | Freeboard       | 1.0 ft                |
| L/W Ratio                                      | 2.0       | Side Slopes (1: | H) 4.0                |
| Maximum Treatment Volume Depth                 | 1.5 ft    | Wet/Dry         | Dry                   |
| Maximum Pond Depth Below Freeboard             | 6.0 ft    | Assumed Contr   | ol EL 54.00 ft        |
|                                                |           |                 |                       |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 621 ft  |
|---------------|---------|
| WTOP OF SLOPE | 311 ft  |
| Area          | 4.43 ac |

#### 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 794 ft  |
|-------|---------|
| WSITE | 421 ft  |
| Area  | 7.67 ac |

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | <u>Cumulative</u> | Notes |
|-----|----------------|-------------|----------------|-------------------|-------|
| GIS | 54             | 164786      | 0.0            | 0.0               |       |
| GIS | 60             | 225022      | 1169424.0      | 1169424.0         |       |

Pond

<u>9-1</u>

Cumulative Ret (ac-ft) Below Freeboard 26.85

> Pond Area 5.2

## POND SIZING CALCULATIONS

I-75 Pond Siting

-

and the second se

# FPID: 452074-2-32-01

-

|                         |                                        | P    | ond Name:               | 9-2   |                                                                                                                  |        | Full                            | Typic    | al Section Wi   | dth        |
|-------------------------|----------------------------------------|------|-------------------------|-------|------------------------------------------------------------------------------------------------------------------|--------|---------------------------------|----------|-----------------|------------|
|                         |                                        |      | Date:                   | 2/28/ | /2024                                                                                                            |        |                                 |          |                 |            |
| PRE-DEVELOPMENT RU      | JNOFF PA                               | RAME | TERS                    |       |                                                                                                                  |        |                                 |          |                 |            |
| Onsite Basin Area       | 38.22                                  | ас   |                         |       |                                                                                                                  |        | В                               | asin Lin | nits            |            |
| Pond Parcel Area        | 19.00                                  | ас   |                         |       |                                                                                                                  |        | 1409+00                         | to       | 1464+00         |            |
| Total Area              | 57.22 ac                               |      |                         |       | There is a Station Equation at the Sumter/Marion County<br>Lines that alters the I-75 Stationing as follows: STA |        |                                 |          |                 |            |
| CURVE NUMBER CALCUA     | TION:                                  |      |                         |       | 1525+64.00                                                                                                       |        |                                 |          | , 45 1010115. 5 |            |
|                         | TYPE A SOI                             | LS   | TYPE B SO               | ILS   | TYPE C SO                                                                                                        | ILS    | TYPE D SOILS                    |          | CN*A            | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                | CN   | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> )                                                                                          | CN     | AREA (ft <sup>2</sup> )         | CN       | UNIA            | TOTALAREA  |
| Impvervious             | 11.11                                  | 98   |                         |       |                                                                                                                  |        |                                 | 1        | 1088.89         | 11.11      |
| Grass                   | 27.11                                  | 39   |                         |       |                                                                                                                  |        |                                 |          | 1057.25         | 27.11      |
| Pond Site Pre Condition | 19.00                                  | 39   |                         |       |                                                                                                                  |        |                                 |          | 741.00          | 19.00      |
|                         |                                        |      |                         |       |                                                                                                                  |        |                                 |          | 0.00            | 0.00       |
|                         |                                        |      |                         |       |                                                                                                                  |        |                                 |          | 0.00            | 0.00       |
|                         |                                        |      |                         |       |                                                                                                                  |        |                                 |          | 0.00            | 0.00       |
|                         |                                        |      |                         |       |                                                                                                                  |        |                                 |          | 0.00            | 0.00       |
|                         |                                        |      |                         |       |                                                                                                                  |        |                                 |          | 0.00            | 0.00       |
| TOTALS                  | 57.22                                  |      | 0                       |       | 0                                                                                                                |        | 0                               |          | 2887.14         | 57.22      |
|                         |                                        |      |                         |       |                                                                                                                  |        | WEIGH                           | TED CN   |                 | 50         |
| Rainfall Depth for 100  | <b>yr-240hr (P) =</b><br>NOAA Atlas 14 |      | in                      |       |                                                                                                                  | Poten  | tial Abstraction<br>S = (1000/0 | • •      |                 |            |
| Runo                    | ff Depth (Q) =                         | 9.0  | in                      |       |                                                                                                                  | Estima | ted Runoff Vo                   | lume =   | 42.97           | ac-ft      |

 $Q = (P - 0.2S)^2/(P + 0.8S)$ 

### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 38.22 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 19.00 | ас |
| Total Area        | 57.22 | ас |

Peak Volume = A x Q

**Basin Limits** 

1409+00 1464+00 to

#### **CURVE NUMBER CALCUATION:**

| LAND USE                                                                                                        | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A              | TOTAL AREA |
|-----------------------------------------------------------------------------------------------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|-------------------|------------|
|                                                                                                                 | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UN <sup>-</sup> A | IOTAL AREA |
| Impervious                                                                                                      | 34.09                   | 98  |                         |    |                         |    |                         |        | 3340.91           | 34.09      |
| Grass                                                                                                           | 4.13                    | 39  |                         |    | ji                      |    |                         |        | 161.03            | 4.13       |
| Pond Site (Pervious)                                                                                            | 7.50                    | 39  |                         |    |                         |    |                         |        | 292.50            | 7.50       |
| Pond Site (Impervious)                                                                                          | 11.50                   | 100 |                         |    |                         |    |                         |        | 1150.00           | 11.50      |
|                                                                                                                 |                         |     |                         |    | 1                       |    |                         |        | 0.00              | 0.00       |
|                                                                                                                 |                         |     |                         |    |                         |    |                         |        | 0.00              | 0.00       |
|                                                                                                                 |                         |     |                         |    |                         |    |                         |        | 0.00              | 0.00       |
|                                                                                                                 |                         |     |                         |    |                         |    |                         |        | 0.00              | 0.00       |
| TOTALS                                                                                                          | 57.22                   |     | 0                       | Î  | 0                       |    | 0                       |        | 4944.44           | 57.22      |
| in the second |                         |     |                         |    |                         |    | WEIGH                   | TED CN |                   | 86         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.1 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.6 S = (1000/CN) - 10

Estimated Runoff Volume = 72.24 ac-ft Peak Volume = A x Q

Pond Name: 9-2 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area) | 0.95<br>0.20   | 38.22 ac<br>0.87<br>34.09 ac<br>4.13 ac<br>N<br>2.77 ac-ft<br>1.59 ac-ft<br>2.77 ac-ft | (whichever | is greater) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------------------------------------------------------------------------------------|------------|-------------|
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                                                                                                             |                |                                                                                        |            |             |
| Existing Runoff Volume<br>Proposed Runoff Volume<br>EPAV = Proposed Runoff - Existing Runoff Volume                                                                                                      | 9              | 42.97 ac-ft<br>72.24 ac-ft<br><b>29.26 ac-ft</b>                                       |            |             |
| Floodplain Comp                                                                                                                                                                                          | ensation       | 0.00 ac-ft                                                                             |            |             |
| TOTAL :<br>3) Estimated Pond Configuration:                                                                                                                                                              | STORAGE        | 29.26 ac-ft                                                                            |            |             |
|                                                                                                                                                                                                          |                | e haand                                                                                |            | 1.0 ft      |
| Maintenance Berm Width                                                                                                                                                                                   | 20.0 ft<br>2.0 | Freeboard<br>Side Slope                                                                |            | 4.0         |
| L/W Ratio                                                                                                                                                                                                | 2.0<br>1.5 ft  | Wet/Dry                                                                                | , (2.11)   | Dry         |
| Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard                                                                                                                                     | 3.0 ft         | Assumed (                                                                              | Control EL | 57.00 ft    |

## 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 961 ft   |
|---------------|----------|
| WTOP OF SLOPE | 480 ft   |
| Area          | 10.59 ac |

| LSITE | 1201 ft  |
|-------|----------|
| WSITE | 624 ft   |
| Area  | 17.21 ac |

|     | <u>Contour</u> | Area   | <u>Storage</u> | Cumulative |
|-----|----------------|--------|----------------|------------|
| GIS | 57             | 452297 | 0.0            | 0.0        |
| GIS | 60             | 486132 | 1407643.5      | 1407643.5  |

Pond

<u>9-2</u>

Cumulative Ret (ac-ft) Below Freeboard 32.32

Pond Area

11.2

I-75 Pond Siting

FPID: 452074-2-32-01

| Pond Name: | 9-3       | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

## PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 38.22 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 19.00 | ас |
| Total Area        | 57.22 | ас |

1409+00to1464+00There is a Station Equation at the Sumter/Marion CountyLines that alters the I-75 Stationing as follows: STA1525+64.00 (AH)/1422+88.98(BK)

**Basin Limits** 

### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SOILS            |    | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN     | Ch A    |            |
|                         |                         | 98 |                         |    |                         |    |                         |        | 1088.89 | 11.11      |
| Impvervious             | 11.11                   |    |                         |    |                         |    |                         |        | 1057.25 | 27.11      |
| Grass                   | 27.11                   | 39 |                         |    |                         |    |                         | +      | 741.00  | 19.00      |
| Pond Site Pre Condition | 19.00                   | 39 |                         |    |                         |    |                         | +      | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |    |                         | +      |         | 0.00       |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    |            |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | +  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 57.22                   |    | 0                       |    | 0                       | 1  | 0                       |        | 2887.14 | 57.22      |
| TOTALS                  | 57.22                   |    | 0                       |    |                         | -  | WEIGH                   | TED CN |         | 50         |

### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

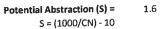
**Runoff Depth (Q) =** 9.0 in Q =  $(P - 0.2S)^2/(P + 0.8S)$ 

### Potential Abstraction (S) = 9.8 S = (1000/CN) - 10

Estimated Runoff Volume = 42.97 ac-ft Peak Volume = A x Q

## POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 38.22 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 19.00 | ас |
| Total Area        | 57.22 | ас |


| Basin Limits |    |         |  |  |  |  |
|--------------|----|---------|--|--|--|--|
| 1409+00      | to | 1464+00 |  |  |  |  |

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS  | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | T CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | ULA     |            |
|                        | 34.09                   | 98   |                         |    |                         |    |                         |        | 3340.91 | 34.09      |
| Impervious             |                         |      |                         |    |                         |    |                         |        | 161.03  | 4.13       |
| Grass                  | 4.13                    | 39   |                         |    |                         |    |                         |        | 292.50  | 7.50       |
| Pond Site (Pervious)   | 7.50                    | 39   |                         |    |                         |    |                         | ++     |         | 11.50      |
| Pond Site (Impervious) | 11.50                   | 100  |                         |    |                         |    |                         | +      | 1150.00 |            |
|                        |                         |      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | + +  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +    |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 57.22                   | ++   | 0                       |    | 0                       |    | 0                       |        | 4944.44 | 57.22      |
| TUTALS                 | 51.22                   |      | <u>J</u>                | J  |                         |    | WEIGH                   | TED CN |         | 86         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.1 in Q =  $(P - 0.2S)^2/(P + 0.8S)$



Estimated Runoff Volume = 72.24 ac-ft Peak Volume = A x Q

Pond Name: 9-3 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |      | 38.22 ac     |                         |
|-------------------------------------------------|------|--------------|-------------------------|
| Weighted C                                      |      | 0.87         |                         |
| Total Impervious                                | 0.95 | 34.09 ac     |                         |
| Total Pervious                                  | 0.20 | 4.13 ac      |                         |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |      | N            |                         |
| Required Treatment (Runoff from 1" Rainfall)    |      | ے 2.77 ac-ft | (whichever is greater)  |
| Required Treatment (1/2" over Area)             |      | 1.59 ac-ft 🔎 | (wittenever is Breater) |
|                                                 |      | 2.77 ac-ft   |                         |
| 2) Estimated Peak Attenuation Volume (EPAV):    |      |              |                         |
| Existing Runoff Volume                          |      | 42.97 ac-ft  |                         |
| Proposed Runoff Volume                          |      | 72.24 ac-ft  |                         |
| EPAV = Proposed Runoff - Existing Runoff Volume |      | 29.26 ac-ft  |                         |

| Floodplain Compensation | 0.00 ac-ft |
|-------------------------|------------|
|                         |            |

3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 3.0 ft  | Assumed Control EL | 57.00 ft |

29.26 ac-ft

TOTAL STORAGE

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 961 ft   |
|---------------|----------|
| WTOP OF SLOPE | 480 ft   |
| Area          | 10.59 ac |

| LSITE | 1201 ft  |
|-------|----------|
| WSITE | 624 ft   |
| Area  | 17.21 ac |

|--|

<u>Pond</u> 9-3

Cumulative Ret (ac-ft) Below Freeboard 34.13

Pond Area

11.8

## I-75 Pond Siting

### FPID: 452074-2-32-01

|                                                          |                                                            | P               | ond Name:                             | 10-1  |                         |     | Full                                | Typica   | al Section Wi        | dth                            |
|----------------------------------------------------------|------------------------------------------------------------|-----------------|---------------------------------------|-------|-------------------------|-----|-------------------------------------|----------|----------------------|--------------------------------|
|                                                          |                                                            |                 | Date:                                 | 2/28/ | 2024                    |     |                                     |          |                      |                                |
| RE-DEVELOPMENT RU                                        | JNOFF PA                                                   | RAME            | TERS                                  |       |                         |     |                                     |          |                      |                                |
| Onsite Basin Area                                        | 28.66                                                      | ac              |                                       |       |                         |     | В                                   | asin Lim | its                  |                                |
| ond Parcel Area                                          | 6.00                                                       | ас              |                                       |       |                         | 1   | 1464+00                             | to       | 1505+50              |                                |
| otal Area                                                | 34.66                                                      | ac              |                                       |       |                         |     |                                     |          |                      |                                |
| CURVE NUMBER CALCUA                                      | TION:                                                      |                 |                                       |       |                         |     |                                     |          |                      |                                |
|                                                          | TYPE A SO                                                  | ILS             | TYPE B SO                             | ILS   | TYPE C 50               | ILS | TYPE D SO                           | ILS      | CN*A                 | TOTAL AREA                     |
| LAND USE                                                 | AREA (ft <sup>2</sup> )                                    | CN              | AREA (ft <sup>2</sup> )               | CN    | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> )             | CN       | CN*A                 | IUTAL AREA                     |
| mpvervious                                               | 8.38                                                       | 98              |                                       |       |                         |     |                                     |          | 821.62               | 8.3                            |
| Grass                                                    | 20.28                                                      | 39              |                                       |       |                         |     |                                     |          | 790.77               | 20.2                           |
| ond Site Pre Condition                                   | 6.00                                                       | 39              |                                       |       |                         |     |                                     |          | 234.00               | 6.0                            |
|                                                          |                                                            |                 |                                       |       |                         |     |                                     |          | 0.00                 | 0.0                            |
|                                                          |                                                            |                 | 1                                     |       |                         |     |                                     |          | 0.00                 | 0.0                            |
|                                                          |                                                            |                 |                                       |       |                         |     |                                     |          | 0.00                 | 0.0                            |
|                                                          |                                                            |                 |                                       |       |                         |     |                                     |          | 0.00                 | 0.0                            |
|                                                          |                                                            |                 | · · · · · · · · · · · · · · · · · · · |       |                         |     |                                     |          | 0.00                 | 0.0                            |
| TOTALS                                                   | 34.66                                                      |                 | 0                                     |       | 0                       |     | 0                                   |          | 1846.39              | 34.6                           |
|                                                          |                                                            |                 |                                       |       |                         |     | WEIGH                               | TED CN   |                      | 5                              |
|                                                          | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFE P |                 |                                       |       |                         |     | <b>ted Runoff Vo</b><br>Peak Volume |          | 27.70                | ac-ft                          |
| Onsite Basin Area                                        | 28.66                                                      |                 |                                       |       |                         |     | в                                   | asin Lim | ite                  |                                |
|                                                          |                                                            |                 |                                       |       |                         |     |                                     | 1        |                      |                                |
| Pond Parcel Area                                         | 6.00                                                       |                 |                                       |       |                         |     | 640+50                              | to       | 682+10               |                                |
| Total Area                                               | 34.66                                                      | ft <sup>2</sup> |                                       |       |                         |     |                                     |          |                      |                                |
| CURVE NUMBER CALCUA                                      | TION:                                                      |                 |                                       |       |                         |     |                                     |          |                      |                                |
| LAND USE                                                 | TYPE A SO                                                  | ILS             | TYPE B SO                             | ILS   | TYPE C SO               | ILS | TYPE D SO                           | ILS      | CN*A                 | TOTAL AREA                     |
| LAND USL                                                 | AREA (ft <sup>2</sup> )                                    | CN              | AREA (ft <sup>2</sup> )               | CN    | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> )             | CN       |                      |                                |
| mpervious                                                | 25.79                                                      | 98              |                                       |       |                         |     |                                     |          | 2526.94              | 25.7                           |
| irass                                                    | 2.87                                                       | 39              |                                       |       |                         |     |                                     |          | 112.12               | 2.8                            |
|                                                          | 2.50                                                       | 39              |                                       |       |                         |     |                                     |          | 97.50                | 2.5                            |
| ond Site (Pervious)                                      | 2.50                                                       | 100             |                                       |       |                         |     |                                     |          | 350.00               | 3.5                            |
|                                                          | 3.50                                                       |                 |                                       | 1     |                         |     |                                     |          | 0.00                 | 0.0                            |
|                                                          | 3.50                                                       |                 |                                       |       |                         |     |                                     |          |                      |                                |
|                                                          | 3.50                                                       |                 |                                       |       |                         |     |                                     |          | 0.00                 |                                |
|                                                          | 3.50                                                       |                 |                                       |       |                         |     |                                     |          | 0.00<br>0.00         | 0.0                            |
| ond Site (Impervious)                                    |                                                            |                 |                                       |       |                         |     |                                     |          | 0.00<br>0.00<br>0.00 | 0.0<br>0.0                     |
| Pond Site (Pervious)<br>Pond Site (Impervious)<br>TOTALS |                                                            |                 | 0                                     |       | 0                       |     | 0                                   |          | 0.00<br>0.00         | 0.0<br>0.0<br>0.0<br>34.6<br>8 |

S = (1000/CN) - 10

Estimated Runoff Volume = 44.80 ac-ft Peak Volume = A x Q

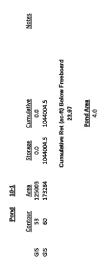
Rainfall Depth for 100yr-240hr (P) = 16.9 NOAA Atlas 14

> **Runoff Depth (Q) =** 15.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

## Pond Name: 10-1 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):


| Area Inside R/W                                |                                                                                                                                                                                                                                                                                                                                                         | 28.66 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Weighted C                                     |                                                                                                                                                                                                                                                                                                                                                         | 0.87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Total Impervious                               | 0.95                                                                                                                                                                                                                                                                                                                                                    | 25.79 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Total Pervious                                 | 0.20                                                                                                                                                                                                                                                                                                                                                    | 2.87 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |                                                                                                                                                                                                                                                                                                                                                         | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Required Treatment (Runoff from 1" Rainfall)   |                                                                                                                                                                                                                                                                                                                                                         | 2.09 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | } (whichever is greater)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Required Treatment (1/2" over Area)            |                                                                                                                                                                                                                                                                                                                                                         | 1.19 ac-ft 🚽                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | (1111011010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                |                                                                                                                                                                                                                                                                                                                                                         | 2.09 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| nated Peak Attenuation Volume (EPAV):          |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Existing Runoff Volume                         |                                                                                                                                                                                                                                                                                                                                                         | 27.70 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Proposed Runoff Volume                         |                                                                                                                                                                                                                                                                                                                                                         | 44.80 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| EPAV = Proposed Runoff - Existing Runoff Volum | e                                                                                                                                                                                                                                                                                                                                                       | 17.09 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Floodplain Com                                 | pensation                                                                                                                                                                                                                                                                                                                                               | 0.00 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| TOTAL                                          | STORAGE                                                                                                                                                                                                                                                                                                                                                 | 19.18 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| nated Pond Configuration:                      |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
| Maintenance Berm Width                         | 20.0                                                                                                                                                                                                                                                                                                                                                    | ft Freeboar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | d                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |
|                                                | 2.0                                                                                                                                                                                                                                                                                                                                                     | Side Slop                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | es (1:H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                | 1.5                                                                                                                                                                                                                                                                                                                                                     | ft Wet/Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |
|                                                | 7.0                                                                                                                                                                                                                                                                                                                                                     | ft Assumed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Control EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 53.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |
| ·                                              |                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |
|                                                | Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area)<br>mated Peak Attenuation Volume (EPAV):<br>Existing Runoff Volume<br>Proposed Runoff Volume<br>EPAV = Proposed Runoff - Existing Runoff Volume<br>Floodplain Com | Weighted C       Total Impervious       0.95         Total Pervious       0.20         Outstanding FL Water (Y/N)[multiply x 1.5]       Required Treatment (Runoff from 1" Rainfall)         Required Treatment (1/2" over Area)         mated Peak Attenuation Volume (EPAV):         Existing Runoff Volume         Proposed Runoff Volume         EPAV = Proposed Runoff - Existing Runoff Volume         Floodplain Compensation         TOTAL STORAGE         mated Pond Configuration:         Maintenance Berm Width       20.0         L/W Ratio       2.0         Maximum Treatment Volume Depth       1.5 | Weighted C       0.87         Total Impervious       0.95         Total Pervious       0.20         Outstanding FL Water (Y/N)[multiply x 1.5]       N         Required Treatment (Runoff from 1" Rainfall)       2.09 ac-ft         Required Treatment (1/2" over Area)       1.19 ac-ft         Inside Peak Attenuation Volume (EPAV):       2.09 ac-ft         Existing Runoff Volume       27.70 ac-ft         Proposed Runoff Volume       17.09 ac-ft         Floodplain Compensation       0.00 ac-ft         TOTAL STORAGE       19.18 ac-ft         mated Pond Configuration:       20.0 ft         Maintenance Berm Width       2.0 side Slope         L/W Ratio       2.0 side Slope         Maximum Treatment Volume Depth       1.5 ft | Weighted C       0.87         Total Impervious       0.95         Total Pervious       0.20         Outstanding FL Water (Y/N)[multiply x 1.5]       N         Required Treatment (Runoff from 1" Rainfall)       2.09 ac-ft         Required Treatment (1/2" over Area)       1.19 ac-ft         Imated Peak Attenuation Volume (EPAV):       2.09 ac-ft         Existing Runoff Volume       27.70 ac-ft         Proposed Runoff Volume       17.09 ac-ft         Floodplain Compensation       0.00 ac-ft         TOTAL STORAGE       19.18 ac-ft         mated Pond Configuration:       20.0 ft         Maintenance Berm Width       2.0 Side Slopes (1:H)         L/W Ratio       2.0         Maximum Treatment Volume Depth       1.5 ft |  |

## 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 535 ft  |
|---------------|---------|
| WTOP OF SLOPE | 267 ft  |
| Area          | 3.28 ac |

| LSITE | 690 ft  |
|-------|---------|
| WSITE | 369 ft  |
| Area  | 5.84 ac |





## I-75 Pond Siting

## FPID: 452074-2-32-01

|                                                                                                                                                                                                                |                                                                                                                                                                                                    | Po                                                                                                              | ond Name:               | 10-2     |                         |         | Full                                                                          | Туріса                                                      | al Section Wi                                                                                      | dth                                                                 |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|-------------------------|----------|-------------------------|---------|-------------------------------------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|
|                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                 | Date:                   | 2/28/3   | 2024                    |         |                                                                               |                                                             |                                                                                                    |                                                                     |
| RE-DEVELOPMENT RU                                                                                                                                                                                              |                                                                                                                                                                                                    | RAME                                                                                                            | TERS                    |          |                         |         |                                                                               |                                                             |                                                                                                    |                                                                     |
|                                                                                                                                                                                                                | 28.66                                                                                                                                                                                              |                                                                                                                 | TENJ                    |          |                         |         | В                                                                             | asin Lim                                                    | its                                                                                                |                                                                     |
| Insite Basin Area                                                                                                                                                                                              |                                                                                                                                                                                                    |                                                                                                                 |                         |          |                         | 11      | 1464+00                                                                       | to                                                          | 1505+50                                                                                            |                                                                     |
| ond Parcel Area                                                                                                                                                                                                | 6.00                                                                                                                                                                                               | ac                                                                                                              |                         |          |                         |         | 1404700                                                                       | 10                                                          | 1505750                                                                                            |                                                                     |
| otal Area                                                                                                                                                                                                      | 34.66                                                                                                                                                                                              | ас                                                                                                              |                         |          |                         |         |                                                                               |                                                             |                                                                                                    |                                                                     |
| URVE NUMBER CALCUA                                                                                                                                                                                             | TION:                                                                                                                                                                                              |                                                                                                                 |                         |          |                         |         |                                                                               |                                                             |                                                                                                    |                                                                     |
|                                                                                                                                                                                                                | TYPE A SO                                                                                                                                                                                          | LS                                                                                                              | TYPE B SOI              | LS       | TYPE C SO               | ILS     | TYPE D SO                                                                     | ILS                                                         | CN*A                                                                                               | TOTAL AREA                                                          |
| LAND USE                                                                                                                                                                                                       | AREA (ft <sup>2</sup> )                                                                                                                                                                            | CN                                                                                                              | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN      | AREA (ft <sup>2</sup> )                                                       | CN                                                          | UV-A                                                                                               |                                                                     |
| npvervious                                                                                                                                                                                                     | 8.38                                                                                                                                                                                               | 98                                                                                                              |                         | i i      |                         |         |                                                                               |                                                             | 821.62                                                                                             | 8.3                                                                 |
| rass                                                                                                                                                                                                           | 20.28                                                                                                                                                                                              | 39                                                                                                              |                         |          |                         |         |                                                                               |                                                             | 790.77                                                                                             | 20.28                                                               |
| ond Site Pre Condition                                                                                                                                                                                         | 6.00                                                                                                                                                                                               | 39                                                                                                              |                         |          |                         |         |                                                                               |                                                             | 234.00                                                                                             | 6.0                                                                 |
|                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                 |                         |          |                         |         |                                                                               |                                                             | 0.00                                                                                               | 0.00                                                                |
|                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                 |                         |          |                         |         |                                                                               |                                                             | 0.00                                                                                               | 0.0                                                                 |
|                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                 |                         |          |                         |         |                                                                               |                                                             | 0.00                                                                                               | 0.00                                                                |
|                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                 |                         |          |                         | +       |                                                                               |                                                             | 0.00                                                                                               | 0.00                                                                |
|                                                                                                                                                                                                                |                                                                                                                                                                                                    |                                                                                                                 |                         |          | _                       |         |                                                                               |                                                             | 0.00                                                                                               | 0.0                                                                 |
| TOTALS                                                                                                                                                                                                         | 34.66                                                                                                                                                                                              |                                                                                                                 | 0                       |          | 0                       |         | 0                                                                             |                                                             | 1846.39                                                                                            | 34.6                                                                |
| Rainfall Depth for 100<br>N                                                                                                                                                                                    | <b>yr-240hr (P) =</b><br>IOAA Atlas 14                                                                                                                                                             |                                                                                                                 |                         |          |                         |         | WEIGH<br>tial Abstractic<br>S = (1000/0                                       | on (S) =<br>CN) - 10                                        | 8.8                                                                                                |                                                                     |
| Rainfall Depth for 100<br>N<br>Runol<br>Q = (P - 0.2                                                                                                                                                           | <b>yr-240hr (P) =</b><br>IOAA Atlas 14<br>ff <b>Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.85)                                                                                                    | 9.6                                                                                                             | in                      |          |                         | Estimat | tial Abstraction<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume               | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q                   | 27.70                                                                                              | ac-ft                                                               |
| Rainfall Depth for 100<br>N<br>Runof<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                                     | <b>yr-240hr (P) =</b><br>IOAA Atlas 14<br>ff <b>Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.85)                                                                                                    | 9.6<br>ARAN                                                                                                     | in                      |          |                         | Estimat | tial Abstraction<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume               | on (S) =<br>CN) - 10<br>Hume =                              | 27.70                                                                                              |                                                                     |
| Rainfall Depth for 100<br>N<br>Runol<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Dnsite Basin Area                                                                                                                | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.                                                                                                     | 9.6<br>ARAN<br>ft <sup>2</sup>                                                                                  | in                      |          |                         | Estimat | tial Abstraction<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume               | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q                   | 27.70                                                                                              |                                                                     |
| Rainfall Depth for 100<br>N<br>Runoi                                                                                                                                                                           | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66                                                                                            | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                               | in                      |          |                         | Estimat | tial Abstractic<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B           | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>asin Lim       | 27.70 a                                                                                            |                                                                     |
| Rainfall Depth for 100<br>N<br>Runof<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                                | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>28.66<br>6.00<br>34.66                                                                            | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                               | in                      |          |                         | Estimat | tial Abstractic<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B           | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>asin Lim       | 27.70 a                                                                                            |                                                                     |
| Rainfall Depth for 100<br>N<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                                         | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:                                                                  | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                            | in                      |          | TYPE C SO               | Estimat | tial Abstractic<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B           | on (S) =<br>:N) - 10<br>                                    | 27.70 a                                                                                            |                                                                     |
| Rainfall Depth for 100<br>N<br>Runof<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                                | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:                                                                  | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                            | IETERS                  | LS<br>CN | TYPE C SO<br>AREA (ft²) | Estimat | tial Abstractic<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>:N) - 10<br>                                    | 27.70 a                                                                                            | ac-ft<br>Total area                                                 |
| Rainfall Depth for 100<br>N<br>Runof<br>Q = (P - 0.2<br>OOST-DEVELOPMENT F<br>Onsite Basin Area<br>Ond Parcel Area<br>Otal Area<br>URVE NUMBER CALCUA                                                          | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:                                                                  | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                            | in<br>IETERS            |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>bits<br>682+10<br>CN*A<br>2526.94                                                         | ac-ft<br>Total Area<br>25.7                                         |
| Rainfall Depth for 100<br>N<br>Runof<br>Q = (P - 0.2<br>OOST-DEVELOPMENT F<br>Onsite Basin Area<br>Ond Parcel Area<br>Otal Area<br>URVE NUMBER CALCUA<br>LAND USE                                              | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                          | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>                                        | IETERS                  |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>bits<br>682+10<br>CN*A<br>2526.94<br>112.12                                               | TOTAL AREA<br>25.7<br>2.8                                           |
| Rainfall Depth for 100<br>N<br>Runod<br>Q = (P - 0.2<br>COST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>npervious<br>rass                         | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>25.79                 | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>tt <sup>2</sup>                         | IETERS                  |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>bits<br>682+10<br>CN*A<br>2526.94<br>112.12<br>97.50                                      | TOTAL AREA<br>25.7<br>2.8<br>2.5                                    |
| Rainfall Depth for 100<br>N<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Nervious<br>rass<br>ond Site (Pervious)           | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>25.79<br>2.87         | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>tt <sup>2</sup><br>SN<br>98<br>39       | IETERS                  |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>aits<br>682+10<br>CN*A<br>2526.94<br>112.12<br>97.50<br>350.00                            | TOTAL AREA<br>25.7<br>2.8<br>2.5<br>3.5                             |
| Rainfall Depth for 100<br>N<br>Runod<br>Q = (P - 0.2<br>COST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>npervious<br>rass<br>ond Site (Pervious)  | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>25.79<br>2.87<br>2.50 | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>tt <sup>2</sup><br>SN<br>98<br>39<br>39 | IETERS                  |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>aits<br>682+10<br>CN*A<br>2526.94<br>112.12<br>97.50<br>350.00<br>0.00                    | TOTAL AREA<br>25.7<br>2.8<br>2.5<br>3.5<br>0.0                      |
| Rainfall Depth for 100<br>N<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Nervious<br>rass<br>ond Site (Pervious)           | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>25.79<br>2.87<br>2.50 | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>tt <sup>2</sup><br>SN<br>98<br>39<br>39 | IETERS                  |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>aits<br>682+10<br>CN*A<br>2526.94<br>112.12<br>97.50<br>350.00<br>0.00<br>0.00            | TOTAL AREA<br>25.7<br>2.8<br>2.5<br>3.5<br>0.0<br>0.0               |
| Rainfall Depth for 100<br>N<br>Runof<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA                                                        | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>25.79<br>2.87<br>2.50 | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>tt <sup>2</sup><br>SN<br>98<br>39<br>39 | IETERS                  |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>aits<br>682+10<br>CN*A<br>2526.94<br>112.12<br>97.50<br>350.00<br>0.000<br>0.000<br>0.000 | TOTAL AREA<br>25.7<br>2.8<br>2.5<br>3.5<br>0.0<br>0.0<br>0.0<br>0.0 |
| Rainfall Depth for 100<br>N<br>Runod<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Nervious<br>irass<br>ond Site (Pervious) | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>28.66<br>6.00<br>34.66<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>25.79<br>2.87<br>2.50 | 9.6<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>tt <sup>2</sup><br>SN<br>98<br>39<br>39 | IETERS                  |          |                         | Estimat | tial Abstractie<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>640+50 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lim<br>to | 27.70<br>aits<br>682+10<br>CN*A<br>2526.94<br>112.12<br>97.50<br>350.00<br>0.00<br>0.00            | ac-ft                                                               |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.2 S = (1000/CN) - 10

Estimated Runoff Volume = 44.80 ac-ft Peak Volume = A x Q

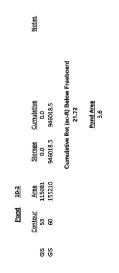
### PC

| Onsite Basin Area | 28.66 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 6.00 ft <sup>2</sup>  |
| Total Area        | 34.66 ft <sup>2</sup> |

## Pond Name: 10-2 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):


| Area Inside R/W                                |          | 28.66 ac              |                  |
|------------------------------------------------|----------|-----------------------|------------------|
| Weighted C                                     |          | 0.87                  |                  |
| Total Impervious                               | 0.95     | 25.79 ac              |                  |
| Total Pervious                                 |          | 2.87 ac               |                  |
|                                                | 0.20     | 200                   |                  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |          | - N                   |                  |
| Required Treatment (Runoff from 1" Rainfall)   |          | 2.09 ac-ft (which     | ever is greater) |
| Required Treatment (1/2" over Area)            |          | 1.19 ac-ft            |                  |
|                                                |          | 2.09 ac-ft            |                  |
|                                                |          |                       |                  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |          |                       |                  |
|                                                |          |                       |                  |
| Existing Runoff Volume                         |          | 27.70 ac-ft           |                  |
| Proposed Runoff Volume                         |          | 44.80 ac-ft           |                  |
| EPAV = Proposed Runoff - Existing Runoff Volum | ne       | 17.09 ac-ft           |                  |
| Floodplain Comp                                | ensation | 0.00 ac-ft            |                  |
| TOTAL                                          | STORAGE  | 17.09 ac-ft           |                  |
| 3) Estimated Pond Configuration:               |          |                       |                  |
| e/                                             |          |                       |                  |
| Maintenance Berm Width                         | 20.0 ft  | Freeboard             | 1.0 ft           |
| L/W Ratio                                      | 2.0      | Side Slopes (1:H)     | 4.0              |
| Maximum Treatment Volume Depth                 | 1.5 ft   | Wet/Dry               | Dry              |
|                                                | 7.0 ft   | Assumed Control E     |                  |
| Maximum fond Deptil below recebbard            |          | , as a medi control E |                  |
| Maximum Pond Depth Below Freeboard             | 7.0 ft   | Assumed Control E     | L 53.00 ft       |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 507 ft  |
|---------------|---------|
| WTOP OF SLOPE | 253 ft  |
| Area          | 2.95 ac |

| LSITE | 656 ft  |
|-------|---------|
| WSITE | 352 ft  |
| Area  | 5.30 ac |





## I-75 Pond Siting

## FPID: 452074-2-32-01

|                        |                                                                    | P                 | ond Name:               | 10-3                     |                         |                  | Full                              | Typica          | al Section Wi | ith        |
|------------------------|--------------------------------------------------------------------|-------------------|-------------------------|--------------------------|-------------------------|------------------|-----------------------------------|-----------------|---------------|------------|
|                        |                                                                    |                   | Date:                   | 2/28/                    | 2024                    |                  |                                   |                 |               |            |
| RE-DEVELOPMENT RU      | <b>INOFF PA</b>                                                    | RAME              | TERS                    |                          |                         |                  |                                   |                 |               |            |
| nsite Basin Area       | 28.66                                                              | ac                |                         |                          |                         |                  | В                                 | asin Lim        | its           |            |
| ond Parcel Area        | 7.00                                                               | ac                |                         |                          |                         | 1                | 1464+00                           | to              | 1505+50       |            |
|                        |                                                                    |                   |                         |                          |                         |                  |                                   |                 |               |            |
| otal Area              | 35.66                                                              | ac                |                         |                          |                         |                  |                                   |                 |               |            |
| URVE NUMBER CALCUA     | TION:                                                              |                   |                         |                          |                         |                  |                                   |                 |               |            |
| LAND USE               | TYPE A SO                                                          | -                 | TYPE B SO               |                          | TYPE C SO               |                  | TYPE D SO                         |                 | CN*A          | TOTAL AREA |
| LAND OSE               | AREA (ft <sup>2</sup> )                                            | CN                | AREA (ft <sup>2</sup> ) | CN                       | AREA (ft <sup>2</sup> ) | CN               | AREA (ft <sup>2</sup> )           | CN              |               |            |
| pvervious              | 8.38                                                               | 98                |                         | $ \downarrow \downarrow$ |                         |                  |                                   | $ \rightarrow $ | 821.62        | 8.3        |
| ass                    | 20.28                                                              | 39                |                         | $ \rightarrow $          |                         |                  |                                   |                 | 790.77        | 20.2       |
| ond Site Pre Condition | 7.00                                                               | 39                |                         |                          |                         |                  |                                   | $ \rightarrow $ | 273.00        | 7.0        |
|                        |                                                                    |                   |                         | $ \rightarrow $          |                         | $\left  \right $ |                                   | $\vdash$        | 0.00          | 0.0        |
|                        |                                                                    |                   |                         |                          |                         | $\vdash$         |                                   | $\vdash$        | 0.00          | 0.0        |
|                        |                                                                    |                   |                         |                          |                         |                  |                                   |                 | 0.00          | 0.0        |
|                        |                                                                    |                   |                         | $\vdash$                 |                         |                  |                                   |                 | 0.00          | 0.0        |
| TOTALS                 | 35.66                                                              | 1                 | 0                       |                          | 0                       |                  | 0                                 |                 | 1885.39       | 35.0       |
| TOTALS                 | 33.00                                                              | 1                 | Ū                       |                          |                         | <u> </u>         | WEIGH                             | TED CN          | 1000.001      |            |
|                        | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S<br>RUNOFF P<br>28.66 |                   |                         |                          |                         | Estima           | ted Runoff Vo<br>Peak Volume<br>B |                 |               | əc-ft      |
|                        |                                                                    |                   |                         |                          |                         | 1                | -                                 | ( ) i           | 682+10        |            |
| ond Parcel Area        | 7.00                                                               | ft-               |                         |                          |                         |                  | 640+50                            | to              | 082+10        |            |
| otal Area              | 35.66                                                              | 5 ft <sup>2</sup> |                         |                          |                         |                  |                                   |                 |               |            |
| URVE NUMBER CALCUA     |                                                                    |                   |                         |                          |                         |                  |                                   |                 |               |            |
| LAND USE               | TYPE A SC                                                          | -                 | TYPE B SO               |                          | TYPE C SO               |                  | TYPE D SO                         |                 | CN*A          | TOTAL AREA |
|                        | AREA (ft <sup>2</sup> )                                            | CN                | AREA (ft <sup>2</sup> ) | CN                       | AREA (ft <sup>2</sup> ) | CN               | AREA (ft <sup>2</sup> )           | CN              | 2526.04       | 25.5       |
| pervious               | 25.79                                                              | 98                |                         |                          |                         |                  |                                   | $\vdash$        | 2526.94       | 25.7       |
| ass                    | 2.87                                                               | 39<br>39          |                         |                          |                         |                  |                                   | +               | 112.12        | 4.0        |
| ond Site (Pervious)    | 4.00                                                               | 100               |                         | +                        |                         | $\vdash$         |                                   |                 | 300.00        | 3.0        |
| ond Site (Impervious)  | 3.00                                                               | 100               |                         |                          |                         | $\vdash$         |                                   | +               | 0.00          | 0.0        |
|                        |                                                                    |                   |                         | <b>├</b> ──┤             |                         | +                |                                   | ++              | 0.00          | 0.0        |
|                        |                                                                    |                   |                         |                          |                         |                  |                                   |                 |               |            |
|                        |                                                                    |                   |                         | +-+                      |                         | $\vdash$         |                                   | $\vdash$        |               |            |
|                        |                                                                    |                   |                         |                          |                         |                  |                                   |                 | 0.00          | 0.0        |
| TOTALS                 | 35.66                                                              |                   | 0                       |                          | 0                       |                  | 0                                 |                 |               | 0.0        |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.2 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.5 S = (1000/CN) - 10

Estimated Runoff Volume = 45.17 ac-ft Peak Volume = A x Q

## Pond Name: 10-3 Date: 2/28/2024

## POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |           | 28.66 ac           |                |
|--------------------------------------------------|-----------|--------------------|----------------|
| Weighted C                                       |           | 0.87               |                |
| Total Impervious                                 | 0.95      | 25.79 ac           |                |
| Total Pervious                                   | 0.20      | 2.87 ac            |                |
|                                                  | 0.20      | N                  |                |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |           | 2.09 ac.ft 7       |                |
| Required Treatment (Runoff from 1" Rainfall)     |           | 1.19 ac-ft         | er is greater) |
| Required Treatment (1/2" over Area)              |           | 2.09 ac-ft         |                |
|                                                  |           | 2.09 ac-tt         |                |
|                                                  |           |                    |                |
| 2) Estimated Peak Attenuation Volume (EPAV):     |           |                    |                |
| The second second second                         |           | 28.26 ac-ft        |                |
| Existing Runoff Volume                           |           | 45.17 ac-ft        |                |
| Proposed Runoff Volume                           | _         | 16.92 ac-ft        |                |
| EPAV = Proposed Runoff - Existing Runoff Volume  | 2         | 10.92 ac-it        |                |
| Floodplain Comp                                  | onsation  | 0.00 ac-ft         |                |
| Floodplain Comp                                  | Pensation | 0.00 2010          |                |
| TOTAL                                            | STORAGE   | 16.92 ac-ft        |                |
| 3) Estimated Pond Configuration:                 |           |                    |                |
| S) Estimated Fond Comparation                    |           |                    |                |
| Maintenance Berm Width                           | 20.0 ft   | Freeboard          | 1.0 ft         |
| L/W Ratio                                        | 2.0       | Side Slopes (1:H)  | 4.0            |
| Maximum Treatment Volume Depth                   | 1.5 ft    | Wet/Dry            | Dry            |
| Maximum Pond Depth Below Freeboard               | 6.0 ft    | Assumed Control EL | 58.50 ft       |
|                                                  |           |                    |                |
| 4) Estimated Pond Dimensions Including Freeboard |           |                    |                |
|                                                  |           |                    |                |
| LTOP OF SLOPE                                    | 538 ft    |                    |                |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

WTOP OF SLOPE

Area

| LSITE | 693 ft  |
|-------|---------|
| WSITE | 371 ft  |
| Area  | 5.90 ac |

269 ft 3.32 ac Pond 10-3

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | <u>Cumulative</u> |
|-----|----------------|-------------|----------------|-------------------|
| GIS | 58.5           | 1434085     | 0.0            | 0.0               |
| GIS | 60             | 1464365     | 2173837.5      | 2173837.5         |

Cumulative Ret (ac-ft) Below Freeboard 49.90

> Pond Area 33.6

## I-75 Pond Siting

## FPID: 452074-2-32-01

|                                                                                                                                                                                 |                                                                                                                                                                                   | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ond Name:               | 1.00      | 1024                                |         | Full                                                                           | Туріса                                                             | al Section Wi                                                                     | dth                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------|-------------------------------------|---------|--------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------------------------------------------------------------------|-------------------------------------------------------|
|                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Date:                   | 2/28/     | 2024                                |         |                                                                                |                                                                    |                                                                                   |                                                       |
| RE-DEVELOPMENT RU                                                                                                                                                               | JNOFF PA                                                                                                                                                                          | RAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | TERS                    |           |                                     |         |                                                                                |                                                                    |                                                                                   |                                                       |
| nsite Basin Area                                                                                                                                                                | 27.14                                                                                                                                                                             | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |           |                                     |         | В                                                                              | asin Lim                                                           | its                                                                               |                                                       |
| ond Parcel Area                                                                                                                                                                 | 8.14                                                                                                                                                                              | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |           |                                     |         | 1505+50                                                                        | to                                                                 | 1545+00                                                                           |                                                       |
| otal Area                                                                                                                                                                       | 35.28                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |           |                                     |         |                                                                                |                                                                    |                                                                                   |                                                       |
| plai Area                                                                                                                                                                       | 55.20                                                                                                                                                                             | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |           |                                     |         |                                                                                |                                                                    |                                                                                   |                                                       |
| URVE NUMBER CALCUA                                                                                                                                                              | TION:                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |           |                                     |         |                                                                                |                                                                    |                                                                                   |                                                       |
|                                                                                                                                                                                 | TYPE A SO                                                                                                                                                                         | ILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TYPE B SO               | ILS       | TYPE C SO                           | LS      | TYPE D SO                                                                      | LS                                                                 | CN*A                                                                              | TOTAL AREA                                            |
| LAND USE                                                                                                                                                                        | AREA (ft <sup>2</sup> )                                                                                                                                                           | CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREA (ft <sup>2</sup> ) | CN        | AREA (ft <sup>2</sup> )             | CN      | AREA (ft <sup>2</sup> )                                                        | CN                                                                 |                                                                                   |                                                       |
| npvervious                                                                                                                                                                      | 7.98                                                                                                                                                                              | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |           |                                     |         |                                                                                |                                                                    | 782.02                                                                            | 7.9                                                   |
| rass                                                                                                                                                                            | 19.16                                                                                                                                                                             | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |           |                                     |         |                                                                                |                                                                    | 747.25                                                                            | 19.1                                                  |
| ond Site Pre Condition                                                                                                                                                          | 8.14                                                                                                                                                                              | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                         |           |                                     |         |                                                                                |                                                                    | 317.46                                                                            | 8.1                                                   |
|                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |           |                                     |         |                                                                                |                                                                    | 0.00                                                                              | 0.0                                                   |
|                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |           |                                     |         |                                                                                |                                                                    | 0.00                                                                              | 0.0                                                   |
|                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |           |                                     |         |                                                                                |                                                                    | 0.00                                                                              | 0.0                                                   |
|                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         |           |                                     |         |                                                                                |                                                                    | 0.00                                                                              | 0.0                                                   |
|                                                                                                                                                                                 |                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                         | <b></b>   |                                     |         |                                                                                |                                                                    | 0.00                                                                              | 35.2                                                  |
| TOTALS                                                                                                                                                                          | 35.28                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                       |           | 0                                   |         | 0                                                                              |                                                                    | 1840./3                                                                           | 35.2                                                  |
|                                                                                                                                                                                 | NOAA Atlas 14                                                                                                                                                                     | Ļ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         |           |                                     |         | WEIGH<br>tial Abstraction<br>S = (1000/C                                       | on (S) =<br>:N) - 10                                               | 9.1                                                                               |                                                       |
| Runo<br>Q = (P - 0.2<br>OST-DEVELOPMENT F                                                                                                                                       | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b>                                                                                         | 9.4<br>9.4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                      |           |                                     | Estimat | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume                | on (S) =<br>:N) - 10<br>lume =<br>= A x Q                          | 27.64                                                                             | ac-ft                                                 |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                                      | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>27.14                                                                                | 9.4<br>ARAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in                      |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B            | on <b>(S) =</b><br>CN) - 10<br>Iume =<br>= A x Q<br>asin Lim       | 27.64 a                                                                           |                                                       |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area                                                                                                                 | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b>                                                                                         | 9.4<br>ARAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in                      |           |                                     | Estimat | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume                | on (S) =<br>:N) - 10<br>lume =<br>= A x Q                          | 27.64                                                                             |                                                       |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area                                                                                              | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>27.14                                                                                | 9.4<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in                      |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B            | on <b>(S) =</b><br>CN) - 10<br>Iume =<br>= A x Q<br>asin Lim       | 27.64 a                                                                           |                                                       |
| Runo<br>Q = (P - 0.2<br>P <b>OST-DEVELOPMENT F</b><br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                         | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>27.14<br>8.14<br>35.28                                                               | 9.4<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | in                      |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B            | on <b>(S) =</b><br>CN) - 10<br>Iume =<br>= A x Q<br>asin Lim       | 27.64 a                                                                           |                                                       |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                                 | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>27.14<br>8.14<br>35.28<br><b>ATION:</b>                                              | = 9,4<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in<br>1ETERS            | 116       | TYPE C SO                           | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on <b>(S) =</b><br>:N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to | 27.64 a                                                                           | ac-ft                                                 |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                                 | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>27.14<br>8.14<br>35.28<br><b>NTION:</b><br><b>TYPE A SO</b>                          | 9,4<br><b>ARAN</b><br><b>h</b> t <sup>2</sup><br><b>h</b> t <sup>2</sup><br><b>h</b> t <sup>2</sup><br><b>h</b> t <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | in<br>IETERS            |           | TYPE C SO                           | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on <b>(S) =</b><br>:N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to | 27.64 a                                                                           |                                                       |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA                                                          | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                          | 9,4<br><b>ARAN</b><br><b>t</b> t <sup>2</sup><br><b>t</b> t <sup>2</sup> | in<br>1ETERS            | ILS<br>CN | TYPE C SO<br>AREA (R <sup>2</sup> ) | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64 a                                                                           | ac-ft<br>Total area                                   |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE                                             | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>24.48                 | 9,4<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>ILS</b><br><b>CN</b><br>98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | in<br>IETERS            |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64<br>hits<br>1545+00                                                          | ac-ft<br>Total Area<br>24.4                           |
| N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>NERVIOUS<br>rass                     | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>24.48<br>2.66         | <ul> <li>9,4</li> <li>ARAN</li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>state</li> <li>N</li> <li>98</li> <li>39</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in<br>IETERS            |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64<br>hits<br>1545+00<br>CN*A<br>2399.38                                       | TOTAL AREA<br>24.4<br>2.6                             |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT P<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>NERVIOUS<br>rass<br>ond Site (Pervious)   | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>24.48<br>2.66<br>3.00 | 9,4<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>ILS</b><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in<br>IETERS            |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64<br>hits<br>1545+00<br>cn*A<br>2399.38<br>103.60                             | TOTAL AREA<br>24.4<br>2.6<br>3.0                      |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT P<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>NERVIOUS<br>rass<br>ond Site (Pervious)   | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>24.48<br>2.66         | <ul> <li>9,4</li> <li>ARAN</li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>state</li> <li>N</li> <li>98</li> <li>39</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | in<br>IETERS            |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64<br>hits<br>1545+00<br>2399.38<br>103.60<br>117.00                           | TOTAL AREA<br>24.4<br>2.6<br>3.0<br>4.0               |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT P<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>mpervious<br>rass<br>ond Site (Pervious) | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>24.48<br>2.66<br>3.00 | 9,4<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>ILS</b><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in<br>IETERS            |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64<br>hits<br>1545+00<br>2399.38<br>103.60<br>117.00<br>400.00                 | TOTAL AREA<br>24.4<br>2.6<br>3.0<br>4.0<br>0.0        |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Fond Parcel Area<br>Fotal Area<br>CURVE NUMBER CALCUA                                                        | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>24.48<br>2.66<br>3.00 | 9,4<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>ILS</b><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in<br>IETERS            |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64<br>hits<br>1545+00<br>2399.38<br>103.60<br>117.00<br>400.00<br>0.00         | TOTAL AREA<br>24.4<br>2.6<br>3.0<br>4.0<br>0.0<br>0.0 |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT P<br>Disite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mervious<br>irass<br>ond Site (Pervious)  | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>27.14<br>8.14<br>35.28<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>24.48<br>2.66<br>3.00 | 9,4<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>ILS</b><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | in<br>IETERS            |           |                                     | Estimat | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1505+50 | on (5) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to        | 27.64<br>hits<br>1545+00<br>2399.38<br>103.60<br>117.00<br>400.00<br>0.00<br>0.00 | ac-ft                                                 |

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

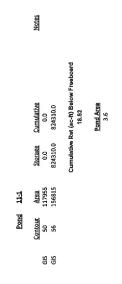
Estimated Runoff Volume = 43.90 ac-ft Peak Volume = A x Q

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 15.4 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

Pond Name: 11-1 Date: 2/28/2024

### POND SIZING ESTIMATION


## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 528 ft  |
|---------------|---------|
| WTOP OF SLOPE | 264 ft  |
| Area          | 3.20 ac |

| LSITE | 681 ft  |
|-------|---------|
| WSITE | 365 ft  |
| Area  | 5.70 ac |



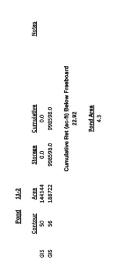


## I-75 Pond Siting FPID: 452074-2-32-01

|                                  |                                                                 |                 | FFID                    | 520      | /4-2-32-01              |          |                                                    |                      |                |            |
|----------------------------------|-----------------------------------------------------------------|-----------------|-------------------------|----------|-------------------------|----------|----------------------------------------------------|----------------------|----------------|------------|
|                                  |                                                                 | P               | ond Name:               | 11-2     |                         |          | Full                                               | Typic                | al Section Wie | dth        |
|                                  |                                                                 |                 | Date:                   | 2/28/    | 2024                    |          |                                                    |                      |                |            |
|                                  |                                                                 |                 |                         |          |                         |          |                                                    |                      |                |            |
| PRE-DEVELOPMENT RU               |                                                                 |                 | TERS                    |          |                         |          |                                                    |                      |                |            |
| Onsite Basin Area                | 27.14                                                           | ac              |                         |          |                         |          | B                                                  | asin Lin             | nits           |            |
| Pond Parcel Area                 | 11.00                                                           | ас              |                         |          |                         |          | 1505+50                                            | to                   | 1545+00        |            |
| Total Area                       | 38.14                                                           | ac              |                         |          |                         |          |                                                    |                      |                |            |
|                                  | TION                                                            |                 |                         |          |                         |          |                                                    |                      |                |            |
| CURVE NUMBER CALCUA              | TION:                                                           |                 |                         |          |                         |          |                                                    |                      |                |            |
| LAND USE                         | TYPE A SOI                                                      | LS              | TYPE B SO               | ILS      | TYPE C SO               | LS       | TYPE D SO                                          | 1.5                  | CN*A           | TOTAL AREA |
|                                  | AREA (ft <sup>2</sup> )                                         | CN              | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> )                            | CN                   | 700.00         | 7.00       |
| mpvervious                       | 7.98                                                            | 98              |                         |          |                         | <u> </u> |                                                    |                      | 782.02         | 7.98       |
| Grass                            | 19.16                                                           | 39              |                         |          |                         |          |                                                    |                      | 747.25         | 19.16      |
| Pond Site Pre Condition          | 11.00                                                           | 39              |                         |          |                         | <u> </u> |                                                    |                      | 429.00         | 11.00      |
|                                  |                                                                 |                 |                         |          |                         |          |                                                    |                      | 0.00           | 0.00       |
|                                  |                                                                 |                 |                         |          |                         |          |                                                    |                      | 0.00           | 0.00       |
|                                  |                                                                 |                 |                         |          |                         | <u> </u> |                                                    |                      | 0.00           | 0.00       |
|                                  |                                                                 |                 |                         | <u> </u> |                         |          |                                                    |                      | 0.00           | 0.00       |
| TOTALS                           | 38.14                                                           |                 | 0                       |          | 0                       |          | 0                                                  |                      | 1958.27        | 38.14      |
| TOTALS                           | 30.14                                                           |                 |                         | I        | 5                       |          | WEIGH                                              |                      |                | 51         |
| Q = (P - 0<br>POST-DEVELOPMENT I | 2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P                        |                 | IETERS                  |          |                         |          | Peak Volume                                        | = A x Q              |                |            |
| Onsite Basin Area                | 27.14                                                           | ft <sup>2</sup> |                         |          |                         |          | B                                                  | asin Lir             | nits           |            |
| Pond Parcel Area                 | 11.00                                                           | ft <sup>2</sup> |                         |          |                         |          | 1505+50                                            | to                   | 1545+00        |            |
| Total Area                       | 38.14                                                           | ft <sup>2</sup> |                         |          |                         |          |                                                    |                      |                |            |
| CURVE NUMBER CALCUA              | TION:                                                           |                 |                         |          |                         |          |                                                    |                      |                |            |
|                                  | TYPE A SO                                                       | ILS             | TYPE B SO               | ILS      | TYPE C SO               | ILS      | TYPE D SO                                          | ILS                  | CN*A           | TOTAL AREA |
| LAND USE                         | AREA (ft <sup>2</sup> )                                         | CN              | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> )                            | CN                   |                |            |
| mpervious                        | 24.48                                                           | 98              |                         |          |                         |          |                                                    |                      | 2399.38        | 24.48      |
| Grass                            | 2.66                                                            | 39              |                         |          |                         |          |                                                    | <u> </u>             | 103.60         | 2.66       |
| Pond Site (Pervious)             | 5.00                                                            | 39              |                         | -        |                         |          |                                                    |                      | 195.00         | 5.00       |
| Pond Site (Impervious)           | 6.00                                                            | 100             |                         | -        |                         | <u> </u> |                                                    | <u> </u>             | 600.00         | 6.00       |
|                                  |                                                                 |                 |                         |          |                         |          |                                                    | <u> </u>             | 0.00           | 0.00       |
|                                  |                                                                 |                 |                         |          |                         |          |                                                    | <u> </u>             | 0.00           | 0.00       |
|                                  |                                                                 |                 |                         | -        |                         |          |                                                    | _                    | 0.00           | 0.00       |
| TOTAL                            | 20 14                                                           |                 | 0                       |          | 0                       |          | 0                                                  |                      | 3297.98        | 38.14      |
| TOTALS                           | 38.14                                                           |                 | U                       | L        | U                       |          | WEIGH                                              | L CN                 |                | 38.14      |
|                                  | <b>yr-240hr (P) =</b><br>NOAA Atlas 14<br><b>ff Depth (Q) =</b> |                 |                         |          |                         |          | ntial Abstraction<br>S = (1000/0<br>ated Runoff Vo | on (S) =<br>CN) - 10 | 1.6            | ac-ft      |
|                                  | 2S) <sup>2</sup> /(P + 0.8S)                                    |                 |                         |          |                         |          | Peak Volume                                        | = A x Q              | L.             |            |

## Pond Name: 11-2 Date: 2/28/2024

### POND SIZING ESTIMATION


# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |           | 27.14 ac            |                    |
|--------------------------------------------------|-----------|---------------------|--------------------|
| Weighted C                                       |           | 0.88                |                    |
| Total Impervious                                 | 0.95      | 24.48 ac            |                    |
| Total Pervious                                   | 0.20      | 2.66 ac             |                    |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |           | N                   |                    |
| Required Treatment (Runoff from 1" Rainfall)     |           | 1.98 ac-ft J (white | hever is greater)  |
| Required Treatment (1/2" over Area)              |           | 1.13 ac-ft 🖵 (Will  | siever is greatery |
|                                                  |           | 1.98 ac-ft          |                    |
| 2) Estimated Peak Attenuation Volume (EPAV):     |           |                     |                    |
| Existing Runoff Volume                           |           | 29.23 ac-ft         |                    |
| Proposed Runoff Volume                           |           | 48.17 ac-ft         |                    |
| EPAV = Proposed Runoff - Existing Runoff Volum   | ie        | 18.95 ac-ft         |                    |
| Floodplain Com                                   | pensation | 0.00 ac-ft          |                    |
| TOTAL                                            | STORAGE   | 18.95 ac-ft         |                    |
| 3) Estimated Pond Configuration:                 |           |                     |                    |
| Maintenance Berm Width                           | 20.0 ft   | Freeboard           | 1.0 ft             |
| L/W Ratio                                        | 2.0       | Side Slopes (1:H)   | 4.0                |
| Maximum Treatment Volume Depth                   | 1.5 ft    | Wet/Dry             | Dry                |
| Maximum Pond Depth Below Freeboard               | 3.0 ft    | Assumed Control     | EL 53.00 ft        |
| 4) Setimated Band Dimonsions Including Freehoard |           |                     |                    |
| 4) Estimated Pond Dimensions Including Freeboard |           |                     |                    |
|                                                  |           |                     |                    |

| LTOP OF SLOPE | 777 ft  |
|---------------|---------|
| WTOP OF SLOPE | 388 ft  |
| Area          | 6.93 ac |

| LSITE | 980 ft   |
|-------|----------|
| WSITE | 514 ft   |
| Area  | 11.57 ac |





## I-75 Pond Siting

|                         |                                                       |                 | FPI                     | D: 4520 | 74-2-32-01              |        |                                                  |                 |               |            |
|-------------------------|-------------------------------------------------------|-----------------|-------------------------|---------|-------------------------|--------|--------------------------------------------------|-----------------|---------------|------------|
|                         |                                                       | P               | ond Name                | 11-3    |                         |        | Full                                             | Typica          | al Section Wi | idth       |
|                         |                                                       |                 | Date                    | : 2/28/ | 2024                    |        |                                                  |                 |               |            |
| PRE-DEVELOPMENT RU      |                                                       | RAMF            | TERS                    |         |                         |        |                                                  |                 |               |            |
| Onsite Basin Area       | 27.14                                                 |                 |                         |         |                         |        | B                                                | lasin Lim       | its           |            |
|                         |                                                       |                 |                         |         |                         |        | 1505+50                                          | to              | 1545+00       |            |
| Pond Parcel Area        | 7.00                                                  |                 |                         |         |                         |        | 1000.00                                          |                 |               |            |
| Total Area              | 34.14                                                 | ac              |                         |         |                         |        |                                                  |                 |               |            |
| CURVE NUMBER CALCUA     | TION:                                                 |                 |                         |         |                         |        |                                                  |                 |               |            |
|                         | TYPE A SO                                             | LS              | TYPE B SC               | DILS    | TYPE C SO               | ILS    | TYPE D SO                                        | ILS             | CN*A          | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                               | CN              | AREA (ft <sup>2</sup> ) | CN      | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )                          | CN              |               |            |
| Impvervious             | 7.98                                                  | 98              |                         |         |                         | -      |                                                  |                 | 782.02        | 7.98       |
| Grass                   | 19.16                                                 | 39              |                         |         | i                       | -      |                                                  | $ \rightarrow $ | 747.25        | 19.16      |
| Pond Site Pre Condition | 7.00                                                  | 39              |                         |         |                         |        |                                                  | +               | 273.00        | 7.00       |
|                         |                                                       |                 |                         |         |                         |        |                                                  |                 | 0.00          | 0.00       |
|                         |                                                       |                 |                         |         |                         | -      |                                                  | ++              | 0.00          | 0.00       |
|                         |                                                       |                 |                         | -       |                         |        |                                                  |                 | 0.00          | 0.00       |
|                         |                                                       |                 |                         | 1       |                         |        |                                                  |                 | 0.00          | 0.00       |
| TOTALS                  | 34.14                                                 |                 | 0                       | 1       | 0                       |        | 0                                                |                 | 1802.27       | 34.14      |
| 101710                  | 0.111                                                 |                 |                         | -       |                         |        | WEIGH                                            | TED CN          |               | 53         |
| -                       | NOAA Atlas 14                                         |                 |                         |         |                         |        | ntial Abstracti<br>S = (1000/<br>Inted Runoff Vo | CN) - 10        | 8.9<br>27.01  | ac-ft      |
|                         | <b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S) |                 | IN                      |         |                         | Latine | Peak Volume                                      |                 | 27.01         |            |
| POST-DEVELOPMENT        | RUNOFF P                                              | ARAN            | IETERS                  |         |                         |        |                                                  |                 |               |            |
| Onsite Basin Area       | 27.14                                                 | ft <sup>2</sup> |                         |         |                         |        | E                                                | Basin Lim       | lits          |            |
| Pond Parcel Area        | 7.00                                                  | ft²             |                         |         |                         |        | 1505+50                                          | to              | 1545+00       |            |
| Total Area              | 34.14                                                 | ft²             |                         |         |                         |        |                                                  |                 |               |            |
| CURVE NUMBER CALCUA     | TION:                                                 |                 |                         |         |                         |        |                                                  |                 |               |            |
|                         | TYPE A SO                                             | ILS             | TYPE B SC               | DILS    | TYPE C SO               | ILS    | TYPE D SC                                        | DILS            | CN*A          | TOTAL AREA |
|                         |                                                       |                 | r                       |         |                         |        |                                                  |                 |               |            |

|                        | TYPE A SC               | MLS | TYPE B SOILS            |    | ITPE C SUILS            |    | TIFED SOLD              |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         |            |
| Impervious             | 24.48                   | 98  |                         |    |                         |    |                         |        | 2399.38 | 24.48      |
|                        | 2.66                    | 39  |                         |    |                         |    |                         |        | 103.60  | 2.66       |
| Grass                  | 3.00                    | 39  |                         |    |                         |    |                         |        | 117.00  | 3.00       |
| Pond Site (Pervious)   | 4.00                    | 100 |                         |    |                         |    |                         | 1      | 400.00  | 4.00       |
| Pond Site (Impervious) | 4.00                    | 100 |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |    |                         |    | 1                       |        | 0.00    | 0.00       |
|                        |                         | + + |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         |    |                         |    | (                       |        | 0.00    | 0.00       |
| TOTALS                 | 34.14                   | + + | 0                       |    | 0                       |    | 0                       |        | 3019.98 | 34.14      |
| TOTALS                 | 24.14                   |     |                         |    |                         | 1  | WEIGH                   | TED CN |         | 88         |

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

ac-ft Estimated Runoff Volume = 43.90 Peak Volume = A x Q

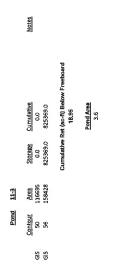
Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.4 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Pond Name: 11-3 Date: 2/28/2024

## POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):


| Area Inside R/W                                 |           | 27.14 ac            |                |
|-------------------------------------------------|-----------|---------------------|----------------|
| Weighted C                                      |           | 0.88                |                |
| Total Impervious                                | 0.95      | 24.48 ac            |                |
| Total Pervious                                  | 0.20      | 2.66 ac             |                |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |           | N                   |                |
| Required Treatment (Runoff from 1" Rainfall)    |           | 1.98 ac-ft (whichow | er is greater) |
| Required Treatment (1/2" over Area)             |           | 1.13 ac-ft          | er is greater) |
|                                                 |           | 1.98 ac-ft          |                |
| 2) Estimated Peak Attenuation Volume (EPAV):    |           |                     |                |
| Existing Runoff Volume                          |           | 27.01 ac-ft         |                |
| Proposed Runoff Volume                          |           | 43.90 ac-ft         |                |
| EPAV = Proposed Runoff - Existing Runoff Volume | e         | 16.89 ac-ft         |                |
| Floodplain Com                                  | pensation | 0.00 ac-ft          |                |
| TOTAL                                           | STORAGE   | 16.89 ac-ft         |                |
| 3) Estimated Pond Configuration:                |           |                     |                |
| Maintenance Berm Width                          | 20.0 ft   | Freeboard           | 1.0 ft         |
| L/W Ratio                                       | 2.0       | Side Slopes (1:H)   | 4.0            |
| Maximum Treatment Volume Depth                  | 1.5 ft    | Wet/Dry             | Dry            |
| Maximum Pond Depth Below Freeboard              | 6.0 ft    | Assumed Control EL  | 50.00 ft       |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 537 ft  |
|---------------|---------|
| WTOP OF SLOPE | 269 ft  |
| Area          | 3.31 ac |

| LSITE | 693 ft  |
|-------|---------|
| WSITE | 370 ft  |
| Area  | 5.89 ac |





## I-75 Pond Siting FPID: 452074-2-32-01

|                                                                                                                                                                                    |                                                                                                                                                                   | Ba                                                                                                                                                                         | isin Name:<br>Date:     | 11-4 8<br>2/28/ |                                      |        | Full                                                      | Туріса                                | al Section Wi                                                                                        | dth                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-----------------|--------------------------------------|--------|-----------------------------------------------------------|---------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|
| PRE-DEVELOPMENT RU                                                                                                                                                                 | JNOFF PA                                                                                                                                                          | RAME                                                                                                                                                                       | TERS                    |                 |                                      |        |                                                           |                                       |                                                                                                      |                                                                              |
| Onsite Basin Area                                                                                                                                                                  | 68.94                                                                                                                                                             |                                                                                                                                                                            |                         |                 |                                      |        | B                                                         | asin Lim                              | its                                                                                                  |                                                                              |
| Pond Parcel Area                                                                                                                                                                   | 15.70                                                                                                                                                             |                                                                                                                                                                            |                         |                 |                                      |        | 1505+50                                                   | to                                    | 1596+50                                                                                              |                                                                              |
|                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                            |                         |                 |                                      |        | 1202120                                                   | 10                                    | 1330.30                                                                                              |                                                                              |
| Total Area                                                                                                                                                                         | 84.64                                                                                                                                                             | ac                                                                                                                                                                         |                         |                 |                                      |        |                                                           |                                       |                                                                                                      |                                                                              |
| CURVE NUMBER CALCUA                                                                                                                                                                |                                                                                                                                                                   |                                                                                                                                                                            |                         |                 |                                      |        |                                                           |                                       |                                                                                                      |                                                                              |
| LAND USE                                                                                                                                                                           | TYPE A SO                                                                                                                                                         |                                                                                                                                                                            | TYPE B SO               | -               | TYPE C SO                            | -      | TYPE D SO                                                 |                                       | CN*A                                                                                                 | TOTAL AREA                                                                   |
|                                                                                                                                                                                    | AREA (ft <sup>2</sup> )                                                                                                                                           | <b>CN</b><br>98                                                                                                                                                            | AREA (ft <sup>2</sup> ) | CN              | AREA (ft <sup>2</sup> )              | CN     | AREA (ft <sup>2</sup> )                                   |                                       | 1801.62                                                                                              | 18.38                                                                        |
| Impvervious                                                                                                                                                                        | 18.38<br>50.56                                                                                                                                                    | 39                                                                                                                                                                         |                         | $\vdash$        |                                      | -      |                                                           |                                       | 1971.69                                                                                              | 50.56                                                                        |
| Grass<br>Pond Site Pre Condition                                                                                                                                                   | 15.70                                                                                                                                                             | 39                                                                                                                                                                         |                         |                 |                                      |        |                                                           |                                       | 612.30                                                                                               | 15.70                                                                        |
| ona site rie contation                                                                                                                                                             | 10.70                                                                                                                                                             | 35                                                                                                                                                                         |                         |                 |                                      |        |                                                           |                                       | 0.00                                                                                                 | 0.00                                                                         |
|                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                            |                         |                 |                                      |        |                                                           |                                       | 0.00                                                                                                 | 0.00                                                                         |
|                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                            |                         |                 |                                      |        |                                                           |                                       | 0.00                                                                                                 | 0.00                                                                         |
|                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                            |                         |                 |                                      |        |                                                           |                                       | 0.00                                                                                                 | 0.00                                                                         |
|                                                                                                                                                                                    |                                                                                                                                                                   |                                                                                                                                                                            |                         |                 |                                      |        |                                                           |                                       | 0.00                                                                                                 | 0.00                                                                         |
| TOTALS                                                                                                                                                                             | 84.64                                                                                                                                                             |                                                                                                                                                                            | 0                       |                 | 0                                    |        | 0                                                         |                                       | 4385.61                                                                                              | 84.64                                                                        |
| ľ                                                                                                                                                                                  | NOAA Atlas 14                                                                                                                                                     | ŀ                                                                                                                                                                          |                         |                 |                                      |        | S = (1000/0                                               | CN) - 10                              |                                                                                                      |                                                                              |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F                                                                                                                                          | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P                                                                                                        | 9.3<br>ARAM                                                                                                                                                                |                         |                 |                                      | Estima | <b>ted Runoff Vo</b><br>Peak Volume                       | iume =                                |                                                                                                      | ac-ft                                                                        |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT I<br>Onsite Basin Area                                                                                                                     | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94                                                                                               | 9.3<br>ARAM                                                                                                                                                                |                         |                 |                                      | Estima | ted Runoff Vo<br>Peak Volume<br>E                         | elume =<br>= A x Q<br>asin Lim        | nits                                                                                                 | ac-ft                                                                        |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F                                                                                                                                          | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P                                                                                                        | 9.3<br><b>ARAM</b><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                   |                         |                 |                                      | Estima | <b>ted Runoff Vo</b><br>Peak Volume                       | iume =<br>= A x Q                     |                                                                                                      | ac-ft                                                                        |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT I<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                   | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64                                                                             | 9.3<br><b>ARAM</b><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                   |                         |                 |                                      | Estima | ted Runoff Vo<br>Peak Volume<br>E                         | elume =<br>= A x Q<br>asin Lim        | nits                                                                                                 | ac-ft                                                                        |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                            | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64                                                                             | 9.3<br><b>ARAM</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                |                         | ILS             | TYPE C SO                            |        | ted Runoff Vo<br>Peak Volume<br>E                         | slume =<br>= A x Q<br>easin Lim<br>to | nits<br>1596+50                                                                                      |                                                                              |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT I<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                   | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64                                                                             | 9.3<br><b>ARAM</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                | IETERS                  | ILS<br>CN       | TYPE C SO<br>AREA (ft <sup>2</sup> ) |        | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50              | slume =<br>= A x Q<br>easin Lim<br>to | nits                                                                                                 | ac-ft<br>TOTAL AREA                                                          |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT I<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>68.94<br>15.7C<br>84.64<br>NTION:<br>TYPE A SO                                                      | 9.3<br><b>ARAM</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | nits<br>1596+50                                                                                      | TOTAL AREA<br>56.40                                                          |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>68.94<br>15.7C<br>84.64<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                           | 9.3<br><b>ARAM</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>CN                                                                       | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | nits<br>1596+50<br>€N*A<br>5527.69<br>488.87                                                         | TOTAL AREA<br>56.40<br>12.54                                                 |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT P<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>56.40<br>12.54<br>3.00 | 9.3<br>ARAM<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>98<br>39<br>39                                               | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | nits<br>1596+50<br>CN*A<br>5527.69<br>488.87<br>488.87<br>117.00                                     | TOTAL AREA<br>56.4(<br>12.54<br>3.0(                                         |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT P<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>68.94<br>15.7C<br>84.64<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>56.40<br>12.54         | 9.3<br>ARAM<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>St 2<br>St 2<br>St 2<br>St 2<br>St 2<br>St 2<br>St 2<br>St 2 | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | hits<br>1596+50<br>CN*A<br>5527.69<br>488.87<br>117.00<br>400.00                                     | TOTAL AREA<br>56.40<br>12.54<br>3.00<br>4.00                                 |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT P<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>56.40<br>12.54<br>3.00 | 9.3<br>ARAM<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>98<br>39<br>39                                               | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | nits<br>1596+50<br>CN*A<br>5527.69<br>488.87<br>117.00<br>400.00<br>0.00                             | TOTAL AREA<br>56.40<br>12.54<br>3.00<br>4.00<br>0.00                         |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT P<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>56.40<br>12.54<br>3.00 | 9.3<br>ARAM<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>98<br>39<br>39                                               | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | hits<br>1596+50<br>CN*A<br>5527.69<br>488.87<br>117.00<br>400.00<br>0.000<br>0.000                   | TOTAL AREA<br>56.40<br>12.54<br>3.00<br>4.00<br>0.00<br>0.00                 |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                            | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>56.40<br>12.54<br>3.00 | 9.3<br>ARAM<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>98<br>39<br>39                                               | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | hits<br>1596+50<br>CN*A<br>5527.69<br>488.87<br>117.00<br>400.00<br>0.000<br>0.000<br>0.000<br>0.000 | TOTAL AREA<br>56.40<br>12.54<br>3.00<br>4.00<br>0.00<br>0.00<br>0.00<br>0.00 |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT P<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>68.94<br>15.70<br>84.64<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>56.40<br>12.54<br>3.00 | 9.3<br>ARAM<br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>98<br>39<br>39                                               | IETERS<br>TYPE B SO     | -               |                                      | ILS    | ted Runoff Vo<br>Peak Volume<br>E<br>1505+50<br>TYPE D SC | slume =<br>= A x Q<br>tasin Lim<br>to | hits<br>1596+50<br>CN*A<br>5527.69<br>488.87<br>117.00<br>400.00<br>0.000<br>0.000                   | TOTAL AREA<br>56.40<br>12.54<br>3.00<br>4.00<br>0.00<br>0.00                 |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.1 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = S = (1000/CN) - 10

> Estimated Runoff Volume = 95.54 ac-ft Peak Volume = A x Q

1.6

## P

| Onsite Basin Area | 68.94 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 15.70 ft <sup>2</sup> |
| Total Area        | 84.64 ft <sup>2</sup> |

### CL

## Basin Name: 11-4 &12-4 Date: 2/28/2024

## POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |          | 68.94 ac               |                |
|-------------------------------------------------|----------|------------------------|----------------|
| Weighted C                                      |          | 0.81                   |                |
| Total Impervious                                | 0.95     | 56.40 ac               |                |
| Total Pervious                                  | 0.20     | 12.54 ac               |                |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |          | N                      |                |
| Required Treatment (Runoff from 1" Rainfall)    |          | 4.67 ac-ft _ (whicheve | er is greater) |
| Required Treatment (1/2" over Area)             |          | 2.87 ac-ft             |                |
|                                                 |          | 4.67 ac-ft             |                |
| 2) Estimated Peak Attenuation Volume (EPAV):    |          |                        |                |
| Existing Runoff Volume                          |          | 65.55 ac-ft            |                |
| Proposed Runoff Volume                          |          | 95.54 ac-ft            |                |
| EPAV = Proposed Runoff - Existing Runoff Volume | 9        | 29.99 ac-ft            |                |
| Floodplain Comp                                 | ensation | 0.00 ac-ft             |                |
| TOTALS                                          | STORAGE  | 34.66 ac-ft            |                |
| 3) Estimated Pond Configuration:                |          |                        |                |
| Maintenance Berm Width                          | 20.0 ft  | Freeboard              | 1.0 ft         |
| L/W Ratio                                       | 2.0      | Side Slopes (1:H)      | 4.0            |
| Maximum Treatment Volume Depth                  | 1.5 ft   | Wet/Dry                | Dry            |
| Maximum Pond Depth Below Freeboard              | 6.0 ft   | Assumed Control EL     | 50.00 ft       |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 756 ft  |
|---------------|---------|
| WTOP OF SLOPE | 378 ft  |
| Area          | 6.56 ac |

| LSITE | 955 ft   |
|-------|----------|
| WSITE | 502 ft   |
| Area  | 11.00 ac |





|                 | <u>Cumulative</u><br>0.0 | 824310.0 | 0 2387940.0 | Cumulative Ret (ac-ft) Below Freeboard | 54,82 | Pond Area<br>14.3 |
|-----------------|--------------------------|----------|-------------|----------------------------------------|-------|-------------------|
|                 | Storage<br>0.0           | 824310.0 | 1563630.    | Cumulativ                              |       |                   |
| Pond 11-4 &12-4 | <u>Area</u><br>117955    | 156815   | 625000      |                                        |       |                   |
| Pond            | Contour<br>50            | 56       | 60          |                                        |       |                   |
|                 | SID                      | GIS      | gis         |                                        |       |                   |

# I-75 Pond Siting

|                              |                                                |      | FPIC                    | ): 4520       | 74-2-32-01              |        |                                      |        |               |            |
|------------------------------|------------------------------------------------|------|-------------------------|---------------|-------------------------|--------|--------------------------------------|--------|---------------|------------|
|                              |                                                | P    | ond Name:<br>Date:      | 12-1<br>2/28/ | 2024                    |        | Full                                 | Туріса | al Section Wi | dth        |
| PRE-DEVELOPMENT RU           | INOFF PAP                                      | RAMI |                         |               |                         |        |                                      |        |               |            |
| Onsite Basin Area            | 41.8                                           |      |                         |               |                         |        | asin Lim                             | its    |               |            |
| Pond Parcel Area             | 12.99                                          | ас   |                         |               |                         |        | 1545+00                              | to     | 1596+50       |            |
| Total Area                   | 54.79                                          | ас   |                         |               |                         |        |                                      |        |               |            |
| CURVE NUMBER CALCUA          | TION:                                          |      |                         |               |                         |        |                                      |        |               |            |
|                              | TYPE A SOI                                     | s    | TYPE B SO               | ILS           | TYPE C SC               | DILS   | TYPE D SO                            | LS     | CN*A          | TOTAL AREA |
| LAND USE                     | AREA (ft <sup>2</sup> )                        | CN   | AREA (ft <sup>2</sup> ) | CN            | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )              | CN     | CN-A          | TOTAL AREA |
| Impvervious                  | 10.40                                          | 98   |                         |               |                         |        |                                      |        | 1019.60       | 10.40      |
| Grass                        | 31.40                                          | 39   |                         |               |                         |        |                                      |        | 1224.44       | 31.40      |
| Pond Site Pre Condition      | 12.99                                          | 39   |                         |               |                         |        |                                      |        | 506.61        | 12.99      |
|                              |                                                |      |                         |               |                         |        |                                      |        | 0.00          | 0.00       |
|                              |                                                |      |                         |               |                         |        |                                      |        | 0.00          | 0.00       |
|                              |                                                |      |                         |               |                         |        |                                      |        | 0.00          | 0.00       |
|                              |                                                |      |                         |               |                         |        |                                      |        | 0.00          | 0.00       |
|                              |                                                |      |                         |               |                         |        |                                      |        | 0.00          | 0.00       |
| TOTALS                       | 54.79                                          |      | 0                       |               | 0                       | 1      | 0                                    |        | 2750.65       | 54.79      |
|                              |                                                |      |                         |               |                         |        | WEIGH                                | TED CN |               | 50         |
| Rainfall Depth for 100y<br>N | <b>yr-240hr (P) =</b><br>IOAA Atlas 14         | 16.9 | in                      |               |                         | Poter  | ntial Abstractio<br>S = (1000/0      |        | 9.9           |            |
|                              | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S) |      | in                      |               |                         | Estima | t <b>ed Runoff Vo</b><br>Peak Volume |        | 40.90         | ac-ft      |
| POST-DEVELOPMENT R           | UNOFF P                                        | ARAN | <b>NETERS</b>           |               |                         |        |                                      |        |               |            |

### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 41.8 ft <sup>2</sup>  |
|-------------------|-----------------------|
| Pond Parcel Area  | 12.99 ft <sup>2</sup> |
| Total Area        | 54.79 ft <sup>2</sup> |

1545+00 to 1596+50

**Basin Limits** 

### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SC               | ILS | TYPE B SOILS TYPE C SOILS |    | TYPE D SO               | ILS         | CN*A                    | TOTAL AREA |         |           |
|------------------------|-------------------------|-----|---------------------------|----|-------------------------|-------------|-------------------------|------------|---------|-----------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> )   | CN | AREA (ft <sup>2</sup> ) | CN          | AREA (ft <sup>2</sup> ) | CN         |         | TOTALPARE |
| Impopulaut             | 31.92                   | 98  |                           |    |                         |             |                         |            | 3128.31 | 31.92     |
| Impervious             | 9.88                    | 39  |                           |    |                         |             |                         |            | 385.26  | 9.88      |
| Grass                  |                         | 39  |                           |    |                         |             |                         |            | 156.00  | 4.00      |
| Pond Site (Pervious)   | 4.00                    |     |                           |    |                         |             |                         |            | 899.00  | 8.99      |
| Pond Site (Impervious) | 8.99                    | 100 |                           |    |                         |             |                         |            | 0.00    | 0.00      |
|                        |                         | ++  |                           |    |                         |             |                         |            | 0.00    | 0.00      |
|                        |                         | +   |                           |    |                         |             |                         |            | 0.00    | 0.00      |
|                        |                         | + + |                           |    |                         |             |                         |            | 0.00    | 0.00      |
| TOTALS                 | 54.79                   | +   | 0                         |    | 0                       |             | 0                       |            | 4568.57 | 54.79     |
| TOTALS                 | 54.75                   |     |                           |    |                         | WEIGHTED CN |                         |            |         | 83        |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 14.7 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

Potential Abstraction (S) = 2.0 S = (1000/CN) - 10

Estimated Runoff Volume = 67.22 ac-ft Peak Volume = A x Q

Pond Name: 12-1 Date: 2/28/2024

### POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                                                                  |         | 41.80 ac                   |             |               |
|--------------------------------------------------------------------------------------------------|---------|----------------------------|-------------|---------------|
| Weighted C                                                                                       |         | 0.77                       |             |               |
| Total Impervious                                                                                 | 0.95    | 31.92 ac                   |             |               |
| Total Pervious                                                                                   | 0.20    | 9.88 ac                    |             |               |
| Outstanding FL Water (Y/N)[multiply x 1.5]                                                       |         | N                          |             |               |
| Required Treatment (Runoff from 1" Rainfall)                                                     |         | _ 2.69 ac-ft               | (whichovo)  | r is greater) |
| Required Treatment (1/2" over Area)                                                              |         | 1.74 ac-ft 了               | (withchever | is greater)   |
|                                                                                                  |         | 2.69 ac-ft                 |             |               |
| 2) Estimated Peak Attenuation Volume (EPAV):<br>Existing Runoff Volume<br>Proposed Runoff Volume |         | 40.90 ac-ft<br>67.22 ac-ft |             |               |
| EPAV = Proposed Runoff - Existing Runoff Volume                                                  |         | 26.32 ac-ft                |             |               |
| Floodplain Comp                                                                                  |         | 0.00 ac-ft                 |             |               |
| TOTAL :<br>3) Estimated Pond Configuration:                                                      | STORAGE | 26.32 ac-ft                |             |               |
| Maintenance Berm Width                                                                           | 20.0 ft | Freeboard                  |             | 1.0 ft        |
| L/W Ratio                                                                                        | 2.0     | Side Slope                 | s (1:H)     | 4.0           |
| Maximum Treatment Volume Depth                                                                   | 1.5 ft  | Wet/Dry                    |             | Dry           |

5.0 ft

53.00 ft

Assumed Control EL

### 4) Estimated Pond Dimensions Including Freeboard

Maximum Pond Depth Below Freeboard

| LTOP OF SLOPE | 719 ft  |
|---------------|---------|
| WTOP OF SLOPE | 360 ft  |
| Area          | 5.93 ac |

| LSITE | 911 ft   |
|-------|----------|
| WSITE | 479 ft   |
| Area  | 10.03 ac |





## I-75 Pond Siting FPID: 452074-2-32-01

|                                                                                                                                                                                                                                                    |                                                                                                                                                                        | - C                                                                                                                                                                                                                                                                              | ond Name:                            |           | 2024                                 |        | Full                                                                                                | 11010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | al Section Wi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                           |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------|-----------|--------------------------------------|--------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  | Date:                                | 2/28/     | 2024                                 |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| PRE-DEVELOPMENT RU                                                                                                                                                                                                                                 | INOFF PA                                                                                                                                                               | RAME                                                                                                                                                                                                                                                                             | TERS                                 |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| Onsite Basin Area                                                                                                                                                                                                                                  | 41.8                                                                                                                                                                   |                                                                                                                                                                                                                                                                                  |                                      |           |                                      |        | R                                                                                                   | asin Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | nits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                           |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                      |           |                                      | 1      | AL 1000 1000                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ASSOCIATION AND AND                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                           |
| Pond Parcel Area                                                                                                                                                                                                                                   | 10.00                                                                                                                                                                  | ac                                                                                                                                                                                                                                                                               |                                      |           |                                      |        | 1545+00                                                                                             | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 1596+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                           |
| Total Area                                                                                                                                                                                                                                         | 51.8                                                                                                                                                                   | ac                                                                                                                                                                                                                                                                               |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| CURVE NUMBER CALCUA                                                                                                                                                                                                                                | TION:                                                                                                                                                                  |                                                                                                                                                                                                                                                                                  |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| LAND USE                                                                                                                                                                                                                                           | TYPE A SO                                                                                                                                                              | ILS                                                                                                                                                                                                                                                                              | TYPE B SO                            | ILS       | TYPE C SOI                           | LS     | TYPE D SO                                                                                           | LS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | CN*A                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | TOTAL AREA                                                                |
| LAND USE                                                                                                                                                                                                                                           | AREA (ft <sup>2</sup> )                                                                                                                                                | CN                                                                                                                                                                                                                                                                               | AREA (ft <sup>2</sup> )              | CN        | AREA (ft <sup>2</sup> )              | CN     | AREA (ft <sup>2</sup> )                                                                             | CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                           |
| mpvervious                                                                                                                                                                                                                                         | 10.40                                                                                                                                                                  | 98                                                                                                                                                                                                                                                                               |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1019.60                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 10.4                                                                      |
| Grass                                                                                                                                                                                                                                              | 31.40                                                                                                                                                                  | 39                                                                                                                                                                                                                                                                               |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 1224.44                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31.4                                                                      |
| Pond Site Pre Condition                                                                                                                                                                                                                            | 10.00                                                                                                                                                                  | 39                                                                                                                                                                                                                                                                               |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 390.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 10.0                                                                      |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                       |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                        | $\vdash$                                                                                                                                                                                                                                                                         |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                       |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                        | $\vdash$                                                                                                                                                                                                                                                                         |                                      |           |                                      |        |                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                       |
|                                                                                                                                                                                                                                                    |                                                                                                                                                                        |                                                                                                                                                                                                                                                                                  |                                      |           |                                      |        |                                                                                                     | ——                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 0.0                                                                       |
| TOTALS                                                                                                                                                                                                                                             | 51.8                                                                                                                                                                   | $\vdash$                                                                                                                                                                                                                                                                         | 0                                    | $\vdash$  | 0                                    |        | 0                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 2634.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 51                                                                        |
| TUTALS                                                                                                                                                                                                                                             | 51.8                                                                                                                                                                   |                                                                                                                                                                                                                                                                                  | 0                                    |           |                                      |        | WEIGH                                                                                               | TED CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 2034.04                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 5                                                                         |
| Runo                                                                                                                                                                                                                                               | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                 | 9.1                                                                                                                                                                                                                                                                              | in                                   |           |                                      | Estima | S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume                                                  | lume =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ac-ft                                                                     |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                                                                                                         | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S]<br>RUNOFF P                                                                                                             | = 9.1<br>)<br>ARAN                                                                                                                                                                                                                                                               |                                      |           |                                      | Estima | S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume                                                  | :N) - 10<br><b>lume =</b><br>= A x Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ac-ft                                                                     |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area                                                                                                                                                                                    | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8                                                                                                     | = 9.1<br>)<br><b>ARAN</b><br>5 ft <sup>2</sup>                                                                                                                                                                                                                                   |                                      |           |                                      | Estima | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B                                                    | :N) - 10<br>lume =<br>= A x Q<br>asin Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ac-ft                                                                     |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                                                                                                         | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S]<br>RUNOFF P                                                                                                             | = 9.1<br>)<br><b>ARAN</b><br>5 ft <sup>2</sup>                                                                                                                                                                                                                                   |                                      |           |                                      | Estima | S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume                                                  | :N) - 10<br><b>lume =</b><br>= A x Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 39.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ac-ft                                                                     |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area                                                                                                                                                                                    | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8                                                                                                     | = 9.1<br>)<br><b>ARAN</b><br>3 ft <sup>2</sup><br>) ft <sup>2</sup>                                                                                                                                                                                                              |                                      |           |                                      | Estima | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B                                                    | :N) - 10<br>lume =<br>= A x Q<br>asin Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ac-ft                                                                     |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                                                                                  | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8                                                                                    | = 9.1<br>)<br><b>ARAN</b><br>3 ft <sup>2</sup><br>) ft <sup>2</sup>                                                                                                                                                                                                              |                                      |           |                                      | Estima | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B                                                    | :N) - 10<br>lume =<br>= A x Q<br>asin Lin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 39.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ac-ft                                                                     |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                                                                                           | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8                                                                                    | = 9.1<br>)<br>ARAN<br>6 ft <sup>2</sup><br>9 ft <sup>2</sup><br>3 ft <sup>2</sup>                                                                                                                                                                                                |                                      | ILS       | TYPE C 50                            |        | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B                                                    | EN) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.26<br>nits<br>1596+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                                                                                  | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8                                                                                    | = 9.1<br>)<br>ARAN<br>6 ft <sup>2</sup><br>9 ft <sup>2</sup><br>3 ft <sup>2</sup>                                                                                                                                                                                                | 1ETERS                               | ILS<br>CN | TYPE C SO<br>AREA (ft <sup>2</sup> ) |        | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | EN) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 39.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ac-ft<br>TOTAL AREA                                                       |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                                                                               | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>TION:                                                                           | = 9.1<br>)<br>ARAN<br>3 ft <sup>2</sup><br>3 ft <sup>2</sup><br>3 ft <sup>2</sup>                                                                                                                                                                                                | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | Image: Second state of the second state of | 39.26<br>nits<br>1596+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                           |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious                                                                                                 | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                                   | <ul> <li>9.1</li> <li>ARAN</li> <li>a ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>c N</li> </ul>                                                                                                                       | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | Image: Second state of the second state of | 39.26<br>nits<br>1596+50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | TOTAL AREA                                                                |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass                                                                                        | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>31.92                          | <ul> <li>9.1</li> <li>ARAN</li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>cn</li> <li>98</li> </ul>                                                                                                                    | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | Image: Second state of the second state of | 39.26<br>nits<br>1596+50<br>CN*A<br>3128.31                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TOTAL AREA<br>31.9<br>9.8                                                 |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)                                                                | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>TION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>31.92<br>9.88                   | <ul> <li>9.1</li> <li>ARAN</li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>cn</li> <li>98</li> <li>39</li> </ul>                                                                                                        | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | Image: Second state of the second state of | 39.26<br>nits<br>1596+50:<br>CN*A<br>3128.31<br>385.26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL AREA<br>31.9<br>9.8<br>4.0<br>6.0                                   |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)                                                                | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>ATION:<br>TYPE ASO<br>AREA (Ħ <sup>2</sup> )<br>31.92<br>9.88<br>4.00           | <ul> <li>9.1</li> <li>ARAN</li> <li>a ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>c n</li> <li>98</li> <li>39</li> <li>39</li> </ul>                                                                                                             | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | Image: Second state of the second state of | 39.26<br>nits<br>1596+50<br>3128.31<br>385.26<br>156.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | TOTAL AREA<br>31.9<br>9.8<br>4.0<br>6.0                                   |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)                                                                | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>ATION:<br>TYPE ASO<br>AREA (Ħ <sup>2</sup> )<br>31.92<br>9.88<br>4.00           | <ul> <li>9.1</li> <li>ARAN</li> <li>a ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>c n</li> <li>98</li> <li>39</li> <li>39</li> </ul>                                                                                                             | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | Image: Second state of the second state of | 39.26<br>nits<br>1596+50:<br>CN*A<br>3128.31<br>385.26<br>156.00<br>600.00<br>600.00<br>0.000<br>0.000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | TOTAL AREA<br>31.9<br>9.8<br>4.0<br>6.0                                   |
| Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)                                                               | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>ATION:<br>TYPE ASO<br>AREA (Ħ <sup>2</sup> )<br>31.92<br>9.88<br>4.00           | <ul> <li>9.1</li> <li>ARAN</li> <li>a ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>c n</li> <li>98</li> <li>39</li> <li>39</li> </ul>                                                                                                             | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00                                         | Image: Second state of the second state of | 39.26<br>nits<br>1596+50<br>CN*A<br>3128.31<br>385.26<br>156.00<br>600.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL AREA<br>31.9<br>9.8<br>4.0<br>6.0<br>0.0<br>0.0                     |
| Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)<br>Pond Site (Impervious)                                      | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>31.92<br>9.88<br>4.00<br>6.00 | <ul> <li>9.1</li> <li>ARAN</li> <li>a ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>c n</li> <li>98</li> <li>39</li> <li>39</li> </ul>                                                                                                             | TYPE B SO                            |           | AREA (ft <sup>2</sup> )              | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00<br>TYPE D SO<br>AREA (ft <sup>2</sup> ) | Image: Second state of the second state of | 39.26 nits 1596+50 CN*A 3128.31 385.26 156.00 600.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. | TOTAL AREA<br>31.9<br>9.8<br>4.0<br>6.0<br>0.0<br>0.0<br>0.0              |
| Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)                                                               | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>31.92<br>9.88<br>4.00<br>6.00 | <ul> <li>9.1</li> <li>ARAN</li> <li>a ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>c n</li> <li>98</li> <li>39</li> <li>39</li> </ul>                                                                                                             | TYPE B SO                            |           |                                      | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00<br>TYPE D SO<br>AREA (ft <sup>2</sup> ) | Image: Second state of the second state of | 39.26<br>nits<br>1596+50<br>CN*A<br>3128.31<br>385.26<br>156.00<br>600.00<br>0.00<br>0.00<br>0.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | TOTAL AREA<br>31.9<br>9.8<br>4.0<br>6.0<br>0.0<br>0.0<br>0.0<br>0.0<br>51 |
| Rund<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)<br>Pond Site (Impervious)                                      | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>31.92<br>9.88<br>4.00<br>6.00 | <ul> <li>9.1</li> <li>ARAN</li> <li>a ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>b ft<sup>2</sup></li> <li>c n</li> <li>98</li> <li>39</li> <li>39</li> </ul>                                                                                                             | TYPE B SO<br>AREA (ft <sup>2</sup> ) |           | AREA (ft <sup>2</sup> )              | ILS    | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00<br>TYPE D SO<br>AREA (ft <sup>2</sup> ) | Image: Second state of the second state of | 39.26 nits 1596+50 CN*A 3128.31 385.26 156.00 600.00 0.00 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0. | TOTAL AREA<br>31.5                                                        |
| Runor<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious)<br>Pond Site (Impervious)<br>TOTALS<br>Rainfall Depth for 100 | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>41.8<br>10.00<br>51.8<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>31.92<br>9.88<br>4.00<br>6.00<br>51.8   | <ul> <li>9.1</li> <li>ARAN</li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>ft<sup>2</sup></li> <li>100</li> <li>100</li> <li>100</li> <li>100</li> <li>100</li> <li>100</li> <li>100</li> </ul> | TYPE B SO<br>AREA (ft <sup>2</sup> ) |           | AREA (ft <sup>2</sup> )              |        | S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1545+00<br>TYPE D SO<br>AREA (ft <sup>2</sup> ) | ILS<br>CN<br>ILS<br>CN<br>FED CN<br>FED CN<br>Sn (S) =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39.26 nits 1596+50  CN*A  3128.31  385.26  156.00  600.00  0.00  0.00  0.00  0.00  0.00  2.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | TOTAL AREA<br>31.9<br>9.8<br>4.0<br>6.0<br>0.0<br>0.0<br>0.0<br>0.0<br>51 |

Runoff Depth (Q) = 14.6 in Q =  $(P - 0.2S)^2/(P + 0.8S)$ 

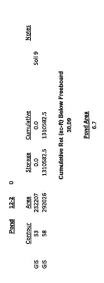
Peak Volume = A x Q

## Pond Name: 12-2 Date: 2/28/2024

## POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |         | 41.80 ac<br>0.77      |                  |
|------------------------------------------------|---------|-----------------------|------------------|
| Weighted C                                     |         |                       |                  |
| Total Impervious                               |         | 31.92 ac              |                  |
| Total Pervious                                 | 0.20    | 9.88 ac               |                  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |         | N                     |                  |
| Required Treatment (Runoff from 1" Rainfall)   |         | 2.69 ac-ft _ (whichey | er is greater)   |
| Required Treatment (1/2" over Area)            |         | 1.74 ac-ft            | ei io 8. co. i , |
|                                                |         | 2.69 ac-ft            |                  |
|                                                |         |                       |                  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |         |                       |                  |
| Existing Runoff Volume                         |         | 39.26 ac-ft           |                  |
| Proposed Runoff Volume                         |         | 62.96 ac-ft           |                  |
| EPAV = Proposed Runoff - Existing Runoff Volum | e       | 23.71 ac-ft           |                  |
| Floodplain Com                                 |         | 0.00 ac-ft            |                  |
| TOTAL                                          | STORAGE | 23.71 ac-ft           |                  |
| 3) Estimated Pond Configuration:               |         |                       |                  |
| Maintenance Berm Width                         | 20.0 ft | Freeboard             | 1.0 ft           |
| L/W Ratio                                      | 2.0     | Side Slopes (1:H)     | 4.0              |
| Maximum Treatment Volume Depth                 | 1.5 ft  | Wet/Dry               | Dry              |
| Maximum Pond Depth Below Freeboard             | 5.0 ft  | Assumed Control EL    | 53.00 ft         |
| Maximum ford beptil below recobuld             |         |                       |                  |


# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 684 ft  |
|---------------|---------|
| WTOP OF SLOPE | 342 ft  |
| Area          | 5.37 ac |

| LSITE | 869 ft  |
|-------|---------|
| WSITE | 458 ft  |
| Area  | 9.14 ac |







#### I-75 Pond Siting EDID: 452074-2-32-01

|                         |                         |      | FPIC                    | ): 4520       | 74-2-32-01              |    |                         |          |               |       |
|-------------------------|-------------------------|------|-------------------------|---------------|-------------------------|----|-------------------------|----------|---------------|-------|
|                         |                         | P    | ond Name:<br>Date:      | 12-3<br>2/28/ | 2024                    |    | Full                    | Туріс    | al Section Wi | dth   |
| PRE-DEVELOPMENT         | RUNOFF PA               | RAME | TERS                    |               |                         |    |                         |          |               |       |
| Onsite Basin Area       | 41.8                    | ac   |                         |               |                         |    | B                       | asin Lim | nits          |       |
| Pond Parcel Area        | 10.00                   | ac   |                         |               |                         |    | 1545+00                 | to       | 1596+50       |       |
| Total Area              | 51.8                    | ac   |                         |               |                         |    |                         |          |               |       |
|                         | JATION:                 | 11.5 | TYPE B SO               | ILS           | TYPE C SO               | LS | TYPE D SO               | ILS      | CN*A          | TOTAL |
| LAND USE                | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN            | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN       |               | _     |
| Impvervious             | 10.40                   | 98   |                         |               |                         |    |                         |          | 1019.60       |       |
| Grass                   | 31.40                   | 39   |                         |               |                         |    |                         |          | 1224.44       |       |
| Pond Site Pre Condition | 10.00                   | 39   |                         |               |                         |    |                         |          | 390.00        | _     |
|                         |                         |      |                         |               |                         |    |                         |          | 0.00          |       |
|                         |                         |      |                         |               |                         | _  |                         |          | 0.00          |       |
|                         |                         |      |                         | 1             |                         |    |                         |          | 0.00          |       |

### **CURVE NUMB**

| LAND USE                | TYPE A SO               | ILS | TYPE & SOILS            |    | TYPE C SOILS            |    | TYPE D SO               | ILS    | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | di k    |            |
| Impuonious              | 10.40                   | 98  | *****                   |    |                         |    |                         |        | 1019.60 | 10.40      |
| Impvervious             | 31.40                   | 39  |                         |    |                         |    |                         |        | 1224.44 | 31.40      |
| Grass                   |                         |     |                         |    |                         |    |                         |        | 390.00  | 10.00      |
| Pond Site Pre Condition | 10.00                   | 39  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | ++  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | ++  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 51.8                    |     | 0                       |    | 0                       |    | 0                       |        | 2634.04 | 51.8       |
| TUTALS                  | 51.0                    | 1   |                         |    |                         |    | WEIGH                   | TED CN |         | 51         |

### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 9.1 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

## **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 41.8 ft <sup>2</sup>  |  |
|-------------------|-----------------------|--|
| Pond Parcel Area  | 10.00 ft <sup>2</sup> |  |
| Total Area        | 51.8 ft <sup>2</sup>  |  |

#### Potential Abstraction (S) = 9.7 S = (1000/CN) - 10

Estimated Runoff Volume = 39.26 ac-ft Peak Volume = A x Q

> **Basin Limits** 1545+00 1596+50 to

## **CURVE NUMBER CALCUATION:**

|                        | TYPE A SC               | ILS | TYPE B SO               | ILS | TYPE C SO               | ILS | TYPE D SO               | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN     |         | TOTALANDA  |
| Impoprious             | 31.92                   | 98  |                         |     | •                       |     |                         |        | 3128.31 | 31.92      |
| Impervious             | 9.88                    | 39  | _                       |     |                         |     |                         |        | 385.26  | 9.88       |
| Grass                  |                         | 39  |                         |     |                         |     |                         |        | 156.00  | 4.00       |
| Pond Site (Pervious)   | 4.00                    |     |                         |     |                         |     |                         | +      | 600.00  | 6.00       |
| Pond Site (Impervious) | 6.00                    | 100 |                         |     |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         | + + |                         |     |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         | + + |                         |     |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         | + + |                         |     |                         |     |                         |        | 0.00    | 0.00       |
| TOTALS                 | 51.8                    |     | 0                       |     | 0                       |     | 0                       |        | 4269.57 | 51.8       |
| TOTAD                  | 51.0                    |     |                         |     |                         |     | WEIGH                   | TED CN |         | 82         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.1 S = (1000/CN) - 10

Estimated Runoff Volume = 62.96 ac-ft Peak Volume = A x Q

Pond Name: 12-3 Date: 2/28/2024

## POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|          | Area Inside R/W                                 |          | 41.80 ac              |                |
|----------|-------------------------------------------------|----------|-----------------------|----------------|
|          | Weighted C                                      |          | 0.77                  |                |
|          | Total Impervious                                | 0.95     | 31.92 ac              |                |
|          | Total Pervious                                  | 0.20     | 9.88 ac               |                |
|          | Outstanding FL Water (Y/N)[multiply x 1.5]      | 1.1      | N                     |                |
|          | Required Treatment (Runoff from 1" Rainfall)    |          | 2.69 ac-ft / (whichew | er is greater) |
|          | Required Treatment (1/2" over Area)             |          | 1.74 ac-ft            | ensgreatery    |
|          |                                                 |          | 2.69 ac-ft            |                |
| 2) Estim | nated Peak Attenuation Volume (EPAV):           |          |                       |                |
|          | Existing Runoff Volume                          |          | 39.26 ac-ft           |                |
|          | Proposed Runoff Volume                          |          | 62.96 ac-ft           |                |
|          | EPAV = Proposed Runoff - Existing Runoff Volume | 2        | 23.71 ac-ft           |                |
|          | Floodplain Comp                                 | ensation | 0.00 ac-ft            |                |
|          | TOTALS                                          | TORAGE   | 23.71 ac-ft           |                |
| 3) Estin | nated Pond Configuration:                       |          |                       |                |
|          | Maintenance Berm Width                          | 20.0 ft  | Freeboard             | 1.0 ft         |
|          | L/W Ratio                                       | 2.0      | Side Slopes (1:H)     | 4.0            |
|          | Maximum Treatment Volume Depth                  | 1.5 ft   | Wet/Dry               | Dry            |
|          | Maximum Pond Depth Below Freeboard              | 5.0 ft   | Assumed Control EL    | 53.00 ft       |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 684 ft  |
|---------------|---------|
| WTOP OF SLOPE | 342 ft  |
| Area          | 5.37 ac |

| LSITE | 869 ft  |
|-------|---------|
| WSITE | 458 ft  |
| Area  | 9.14 ac |





## I-75 Pond Siting FPID: 452074-2-32-01

|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            | P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ond Name:                                            |        |                                      |        | Full                                                                                                                   |                                                               |                                                                                                         |                                                                      |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------|--------------------------------------|--------|------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Date:                                                | 2/28/  | 2024                                 |        |                                                                                                                        |                                                               |                                                                                                         |                                                                      |
| PRE-DEVELOPMENT RU                                                                                                                                                                                                                      | JNOFF PA                                                                                                                                                                                                   | RAME                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TERS                                                 |        |                                      |        |                                                                                                                        |                                                               |                                                                                                         |                                                                      |
| Onsite Basin Area                                                                                                                                                                                                                       | 37.8                                                                                                                                                                                                       | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |        |                                      |        | В                                                                                                                      | asin Lin                                                      | nits                                                                                                    |                                                                      |
| Pond Parcel Area                                                                                                                                                                                                                        | 17.50                                                                                                                                                                                                      | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |        |                                      | 1      | 1596+50                                                                                                                | to                                                            | 1642+50                                                                                                 |                                                                      |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |        |                                      | - 2    | 50 - 12 MB                                                                                                             |                                                               |                                                                                                         |                                                                      |
| lotal Area                                                                                                                                                                                                                              | 55.3                                                                                                                                                                                                       | ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |        |                                      |        |                                                                                                                        |                                                               |                                                                                                         |                                                                      |
| CURVE NUMBER CALCUA                                                                                                                                                                                                                     | TION:                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |        |                                      |        |                                                                                                                        |                                                               |                                                                                                         |                                                                      |
|                                                                                                                                                                                                                                         | TYPE A SO                                                                                                                                                                                                  | 11.5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | TYPE B 50                                            | ILS    | TYPE C SO                            | ILS    | TYPE D SO                                                                                                              | ILS                                                           | T                                                                                                       |                                                                      |
| LAND USE                                                                                                                                                                                                                                | AREA (ft <sup>2</sup> )                                                                                                                                                                                    | CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | AREA (ft <sup>2</sup> )                              | CN     | AREA (ft <sup>2</sup> )              | CN     | AREA (ft <sup>2</sup> )                                                                                                | CN                                                            | CN*A                                                                                                    | TOTAL AREA                                                           |
| mpvervious                                                                                                                                                                                                                              | 9.29                                                                                                                                                                                                       | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |        |                                      |        |                                                                                                                        |                                                               | 910.71                                                                                                  | 9.2                                                                  |
| rass                                                                                                                                                                                                                                    | 28.51                                                                                                                                                                                                      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |        |                                      |        |                                                                                                                        |                                                               | 1111.78                                                                                                 | 28.5                                                                 |
| ond Site Pre Condition                                                                                                                                                                                                                  | 17.50                                                                                                                                                                                                      | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                      |        |                                      |        |                                                                                                                        |                                                               | 682.50                                                                                                  | 17.5                                                                 |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | •                                                    |        |                                      |        |                                                                                                                        |                                                               | 0.00                                                                                                    | 0.0                                                                  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |        |                                      |        |                                                                                                                        |                                                               | 0.00                                                                                                    | 0.0                                                                  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |        |                                      |        |                                                                                                                        |                                                               | 0.00                                                                                                    | 0.0                                                                  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            | I                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                      |        |                                      |        |                                                                                                                        |                                                               | 0.00                                                                                                    | 0.0                                                                  |
|                                                                                                                                                                                                                                         |                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |        |                                      |        |                                                                                                                        |                                                               | 0.00                                                                                                    | 0.0                                                                  |
|                                                                                                                                                                                                                                         | 55.3                                                                                                                                                                                                       | 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 0                                                    |        | 0                                    |        | 0                                                                                                                      |                                                               | 2704.98                                                                                                 | 55.                                                                  |
| TOTALS                                                                                                                                                                                                                                  | 55.5                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                      |        |                                      |        |                                                                                                                        |                                                               |                                                                                                         |                                                                      |
| Rainfall Depth for 100<br>N<br>Runoi                                                                                                                                                                                                    | <b>yr-240hr (P) =</b><br>NOAA Atlas 14<br>ff Depth (Q) =                                                                                                                                                   | 8.7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                      |        |                                      |        | tial Abstraction<br>S = (1000/Contect Runoff Vo                                                                        | CN) - 10<br>plume =                                           |                                                                                                         | 4<br>ac-ft                                                           |
| Rainfall Depth for 100<br>N<br>Runo                                                                                                                                                                                                     | y <b>r-240hr (P)</b> =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P                                                                                                      | 8.7<br>ARAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                   |        |                                      |        | n <b>tial Abstracti</b><br>S = (1000/0<br>I <b>ted Runoff Vo</b><br>Peak Volume                                        | on (S) =<br>CN) - 10<br>blume =<br>= A x Q                    | 40.03 a                                                                                                 |                                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:                                                                                                                                                                                     | <b>yr-240hr (P) =</b><br>NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                            | 8.7<br>ARAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                   |        |                                      |        | n <b>tial Abstracti</b><br>S = (1000/0<br>I <b>ted Runoff Vo</b><br>Peak Volume                                        | on (S) =<br>CN) - 10<br>blume =                               | 40.03 a                                                                                                 |                                                                      |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                                                              | y <b>r-240hr (P)</b> =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P                                                                                                      | 8.7<br>ARAN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | in                                                   |        |                                      |        | n <b>tial Abstracti</b><br>S = (1000/0<br>I <b>ted Runoff Vo</b><br>Peak Volume                                        | on (S) =<br>CN) - 10<br>blume =<br>= A x Q                    | 40.03 a                                                                                                 |                                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area                                                                                                                      | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8                                                                                                      | 8.7<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                   |        |                                      |        | n <b>tial Abstracti</b><br>S = (1000/0<br><b>ted Runoff Vo</b><br>Peak Volume<br>B                                     | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin       | 40.03 a                                                                                                 |                                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                                                          | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3                                                                                     | 8.7<br>ARAN<br>ft <sup>2</sup><br>ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | in                                                   |        |                                      | Estima | ntial Abstraction<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                       | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03 a                                                                                                 |                                                                      |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA                                                                                  | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3<br>NTION:                                                                           | 8.7<br><b>ARAN</b><br><b>ARAN</b><br><b>h</b> ft <sup>2</sup><br><b>h</b> ft <sup>2</sup><br><b>h</b> ft <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | in<br>IETERS<br>TYPE B SO                            |        | TYPE C SO                            | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03 a                                                                                                 |                                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                                                          | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37. 8<br>17. 50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                                 | 8.7<br><b>ARAN</b><br><b>f</b> t <sup>2</sup><br><b>f</b> t <sup>2</sup>  | in<br>IETERS                                         | ILS CN | TYPE C SO<br>AREA (ft <sup>2</sup> ) | Estima | ntial Abstraction<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                       | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03 a<br>nits<br>1642+50                                                                              | ac-ft<br>TOTAL AREA                                                  |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                                       | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37. 8<br>17. 50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51                        | 8.7<br><b>ARAIV</b><br><b>h</b> t <sup>2</sup><br><b>h</b> t <sup>2</sup> | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03 a<br>nits<br>1642+50<br>CN*A<br>2794.21                                                           | ac-ft<br>TOTAL AREA<br>28.5                                          |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>mpervious<br>Grass                                                 | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37. 8<br>17. 50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51<br>9.29                | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03<br>nits<br>1642+50<br>CN*A<br>2794.21<br>362.22                                                   | TOTAL AREA<br>28.5<br>9.2                                            |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>mpervious<br>irass<br>ond Site (Pervious)                          | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51<br>9.29<br>5.50          | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03 a<br>nits<br>1642+50<br>CN*A<br>2794.21<br>362.22<br>214.50                                       | TOTAL AREA<br>28.5<br>9.2<br>5.5                                     |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Npervious<br>rass<br>ond Site (Pervious)                           | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37. 8<br>17. 50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51<br>9.29                | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03 a<br>nits<br>1642+50<br>CN*A<br>2794.21<br>362.22<br>214.50<br>1200.00                            | TOTAL AREA<br>28.5<br>9.2<br>5.5<br>12.0                             |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious)                          | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51<br>9.29<br>5.50          | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03<br>nits<br>1642+50<br>CN*A<br>2794.21<br>362.22<br>214.50<br>1200.00<br>1200.00                   | TOTAL AREA<br>28.5<br>9.2<br>5.5<br>12.0<br>0.0                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious)                          | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51<br>9.29<br>5.50          | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03<br>nits<br>1642+50<br>CN*A<br>2794.21<br>362.22<br>214.50<br>1200.00<br>1200.00<br>0.00           | TOTAL AREA<br>28.5<br>9.2<br>5.5<br>12.0<br>0.0                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious)                          | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51<br>9.29<br>5.50          | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03<br>hits<br>1642+50<br>CN*A<br>2794.21<br>362.22<br>214.50<br>1200.00<br>1200.00<br>0.000<br>0.000 | TOTAL AREA<br>28.5<br>9.2<br>5.5<br>12.0<br>0.0<br>0.0<br>0.0        |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>Grass<br>ond Site (Pervious)<br>ond Site (Impervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>28.51<br>9.29<br>5.50<br>12.00 | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>IETERS<br>TYPE B SO<br>AREA (ft <sup>2</sup> ) |        | AREA (ft <sup>2</sup> )              | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff VC<br>Peak Volume<br>B<br>1596+50<br>TYPE D SO<br>AREA (ft <sup>2</sup> ) | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03<br>hits<br>1642+50<br>CN*A<br>2794.21<br>362.22<br>214.50<br>1200.00<br>1200.00<br>0.000<br>0.000 | TOTAL AREA<br>28.5<br>9.2<br>5.5<br>12.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| Rainfall Depth for 100<br>N<br>Runoi<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                                                | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P<br>37.8<br>17.50<br>55.3<br>NTION:<br>TYPE A SO<br>AREA (R <sup>2</sup> )<br>28.51<br>9.29<br>5.50<br>12.00  | 8.7<br><b>ARAN</b><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br>ft <sup>2</sup><br><b>CN</b><br>98<br>39<br>39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | in<br>IETERS<br>TYPE B SO                            |        |                                      | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>1596+50                                          | on (S) =<br>CN) - 10<br>blume =<br>= A x Q<br>Basin Lin<br>to | 40.03<br>hits<br>1642+50<br>CN*A<br>2794.21<br>362.22<br>214.50<br>1200.00<br>1200.00<br>0.000<br>0.000 | ac-ft<br>TOTAL AREA                                                  |

Runoff Depth (Q) = 14.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

Estimated Runoff Volume = 67.37 ac-ft Peak Volume = A x Q

Pond Name: 13-1 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

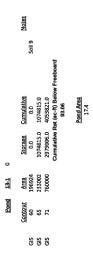
| Area Inside R/W      |                          |      | 37.80 ac     |                          |
|----------------------|--------------------------|------|--------------|--------------------------|
| Weighted C           |                          |      | 0.77         |                          |
| -                    | Total Impervious         | 0.95 | 28.51 ac     |                          |
|                      | Total Pervious           | 0.20 | 9.29 ac      |                          |
| Outstanding FL Water | · (Y/N)[multiply x 1.5]  |      | N            |                          |
| Required Treatment ( | Runoff from 1" Rainfall) |      | 2.41 ac-ft ک | (whichever is greater)   |
| Required Treatment ( | 1/2" over Area)          |      | 1.58 ac-ft 🕤 | (Willeliever is Breater) |
|                      |                          |      | 2.41 ac-ft   |                          |
|                      |                          |      |              |                          |

# 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 40.03 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 67.37 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 27.34 ac-ft |
| Floodplain Compensation                         | 0.00 ac-ft  |
| TOTAL STORAGE                                   | 29.75 ac-ft |

### 3) Estimated Pond Configuration:

| Maintenance Berm Width 20.0 ft Freeboard                     | 1.0 ft   |
|--------------------------------------------------------------|----------|
| L/W Ratio 2.0 Side Slopes (1:H)                              | 4.0      |
| Maximum Treatment Volume Depth 1.5 ft Wet/Dry                | Dry      |
| Maximum Pond Depth Below Freeboard 2.0 ft Assumed Control EL | 60.00 ft |


### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 1178 ft  |
|---------------|----------|
| WTOP OF SLOPE | 589 ft   |
| Area          | 15.92 ac |

| LSITE | 1461 ft  |
|-------|----------|
| WSITE | 755 ft   |
| Area  | 25.31 ac |







#### 1-75 Pond Siting . . . . . . .

|                      |                                           |                 | FPID                                 | . 4520   | 74-2-32-01                           |           |                                      |           |                                                             |                                                               |
|----------------------|-------------------------------------------|-----------------|--------------------------------------|----------|--------------------------------------|-----------|--------------------------------------|-----------|-------------------------------------------------------------|---------------------------------------------------------------|
|                      |                                           | Po              | nd Name:                             | 13-2     |                                      |           | Full                                 | Typic     | al Section Wi                                               | dth                                                           |
|                      |                                           |                 | Date:                                | 2/28/    | 2024                                 |           |                                      |           |                                                             |                                                               |
| PRE-DEVELOPMENT RU   | NOFF PAI                                  | RAME            | TERS                                 |          |                                      |           |                                      |           |                                                             |                                                               |
| Onsite Basin Area    | 37.8                                      |                 |                                      |          |                                      |           | В                                    | asin Lin  | nits                                                        |                                                               |
| Pond Parcel Area     | 9.50                                      | ас              |                                      |          |                                      |           | 1596+50                              | to        | 1642+50                                                     |                                                               |
| Total Area           | 47.3                                      | ас              |                                      |          |                                      |           |                                      |           |                                                             |                                                               |
| CURVE NUMBER CALCUAT | FION:                                     |                 |                                      |          |                                      |           |                                      |           |                                                             |                                                               |
|                      | _                                         | 15              | TYPE B SO                            | LS       | TYPE C SO                            | ILS       | TYPE D SO                            | LS        |                                                             |                                                               |
| LAND USE             | TYPE A 501                                |                 | TYPE B SO<br>AREA (ft <sup>2</sup> ) | LS<br>CN | TYPE C SO<br>AREA (ft <sup>2</sup> ) | ILS<br>CN | TYPE D SO<br>AREA (ft <sup>2</sup> ) | ILS<br>CN | CN*A                                                        | TOTAL AREA                                                    |
| LAND USE             | _                                         |                 | TYPE B SO<br>AREA (ft <sup>2</sup> ) |          |                                      |           |                                      |           | 910.71                                                      | 9.2                                                           |
| LAND USE             | TYPE A 501<br>AREA (ft <sup>2</sup> )     | CN              |                                      |          |                                      |           |                                      |           | 910.71<br>1111.78                                           | 9.2<br>28.5                                                   |
| LAND USE -           | TYPE A 501<br>AREA (ft²)<br>9.29          | <b>CN</b><br>98 |                                      |          |                                      |           |                                      |           | <u>910.71</u><br>1111.78<br>370.50                          | 9.2<br>28.5<br>9.5                                            |
| LAND USE -           | TYPE A 501<br>AREA (ft²)<br>9.29<br>28.51 | см<br>98<br>39  |                                      |          |                                      |           |                                      |           | 910.71<br>1111.78<br>370.50<br>0.00                         | 9.2<br>28.5<br>9.5<br>0.0                                     |
| LAND USE -           | TYPE A 501<br>AREA (ft²)<br>9.29<br>28.51 | см<br>98<br>39  |                                      |          |                                      |           |                                      |           | <u>910.71</u><br>1111.78<br>370.50                          | 9.2<br>28.5<br>9.5<br>0.0<br>0.0                              |
| LAND USE -           | TYPE A 501<br>AREA (ft²)<br>9.29<br>28.51 | см<br>98<br>39  |                                      |          |                                      |           |                                      |           | 910.71<br>1111.78<br>370.50<br>0.00                         | 9.2<br>28.5<br>9.5<br>0.0<br>0.0<br>0.0                       |
| LAND USE -           | TYPE A 501<br>AREA (ft²)<br>9.29<br>28.51 | см<br>98<br>39  |                                      |          |                                      |           |                                      |           | 910.71<br>1111.78<br>370.50<br>0.00<br>0.00                 | 9.29<br>28.53<br>9.54<br>0.00<br>0.00<br>0.00<br>0.00         |
| LAND USE -           | TYPE A 501<br>AREA (ft²)<br>9.29<br>28.51 | см<br>98<br>39  |                                      |          |                                      |           |                                      |           | 910.71<br>1111.78<br>370.50<br>0.00<br>0.00<br>0.00         | 9.24<br>28.5<br>9.5<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| LAND USE             | TYPE A 501<br>AREA (ft²)<br>9.29<br>28.51 | см<br>98<br>39  |                                      |          |                                      |           |                                      |           | 910.71<br>1111.78<br>370.50<br>0.00<br>0.00<br>0.00<br>0.00 | 9.29<br>28.50<br>9.50<br>0.00<br>0.00<br>0.00                 |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 9.0 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 37.8 | ft <sup>2</sup> |
|-------------------|------|-----------------|
| Pond Parcel Area  | 9.50 | ft²             |
| Total Area        | 47.3 | ft²             |

Potential Abstraction (S) = S = (1000/CN) - 10

Estimated Runoff Volume = ac-ft 35.63 Peak Volume = A x Q

**Basin Limits** 1642+50 1596+50 to

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SO               | ILS | TYPE C SO               | ILS | TYPE D SO               | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN     | UVA     | TOTACASEA  |
| Impervious             | 28.51                   | 98  |                         |     | ******                  |     |                         |        | 2794.21 | 28.51      |
|                        |                         | 39  |                         |     |                         |     |                         |        | 362.22  | 9.29       |
| Grass                  | 9.29                    |     | _                       |     |                         |     |                         |        | 156.00  | 4.00       |
| Pond Site (Pervious)   | 4.00                    | 39  |                         |     |                         |     |                         | +      | 550.00  | 5.50       |
| Pond Site (Impervious) | 5.50                    | 100 |                         |     |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         |     |                         |     |                         | +      | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |     | _                       | +      | 0.00    | 0.00       |
|                        |                         | +   |                         |     |                         | 1-1 |                         | +      | 0.00    | 0.00       |
| TOTALS                 | 47.3                    | +-+ | 0                       |     | 0                       |     | 0                       |        | 3862.43 | 47.3       |
| TOTALS                 | 47.5                    | 1   | -                       | 1   |                         |     | WEIGH                   | TED CN |         | 82         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.5 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 2.2 S = (1000/CN) - 10

Estimated Runoff Volume = 57.05 ac-ft Peak Volume = A x Q

Pond Name: 13-2 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |           | 37.80 ac             |               |
|-------------------------------------------------|-----------|----------------------|---------------|
| Weighted C                                      |           | 0.77                 |               |
| Total Impervious                                | 0.95      | 28.51 ac             |               |
| Total Pervious                                  |           | 9.29 ac              |               |
|                                                 | 0.20      | N                    |               |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |           | 1012                 |               |
| Required Treatment (Runoff from 1" Rainfall)    |           | 2.41 ac-ft (whicheve | r is greater) |
| Required Treatment (1/2" over Area)             |           | 1.58 ac-ft           | in greatery   |
|                                                 |           | 2.41 ac-ft           |               |
| 2) Estimated Peak Attenuation Volume (EPAV):    |           |                      |               |
| Existing Runoff Volume                          |           | 35.63 ac-ft          |               |
| Proposed Runoff Volume                          |           | 57.05 ac-ft          |               |
| EPAV = Proposed Runoff - Existing Runoff Volume | 3         | 21.42 ac-ft          |               |
| Floodplain Comp                                 | pensation | 0.00 ac-ft           |               |
| TOTAL                                           | STORAGE   | 21.42 ac-ft          |               |
| 3) Estimated Pond Configuration:                |           |                      |               |
| Maintenance Berm Width                          | 20.0 ft   | Freeboard            | 1.0 ft        |
| L/W Ratio                                       | 2.0       | Side Slopes (1:H)    | 4.0           |
| Maximum Treatment Volume Depth                  | 1.5 ft    | Wet/Dry              | Dry           |
|                                                 |           | Assumed Control EL   | 60.00 ft      |
| Maximum Pond Depth Below Freeboard              | 5.0 ft    | Assumed Control EL   | 00.00 11      |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 651 ft  |
|---------------|---------|
| WTOP OF SLOPE | 326 ft  |
| Area          | 4.87 ac |

| LSITE | 830 ft  |
|-------|---------|
| WSITE | 439 ft  |
| Area  | 8.36 ac |

|            | <u>Pond</u>                | <u>13-2</u>                     | 0                                  |                                       |        |              |
|------------|----------------------------|---------------------------------|------------------------------------|---------------------------------------|--------|--------------|
| GIS<br>GIS | <u>Contour</u><br>60<br>65 | <u>Area</u><br>203623<br>240835 | <u>Storage</u><br>0.0<br>1111145.0 | <u>Cumulative</u><br>0.0<br>1111145.0 | Soil 9 | <u>Notes</u> |

# Cumulative Ret (ac-ft) Below Freeboard

25.51

Pond Area 5.5

# I-75 Pond Siting

FPID: 452074-2-32-01

|                     |                         | P    | ond Name:<br>Date:      | 13-3<br>2/28/             | 2024                    |     | Full                    | Туріс     | al Section W | idth       |
|---------------------|-------------------------|------|-------------------------|---------------------------|-------------------------|-----|-------------------------|-----------|--------------|------------|
| PRE-DEVELOPMENT R   | UNOFF PA                | RAME | TERS                    |                           |                         |     |                         |           |              |            |
| Onsite Basin Area   | 37.8                    | ac   |                         |                           |                         |     | B                       | lasin Lin | nits         |            |
| Pond Parcel Area    | 9.50                    | ac   |                         |                           |                         |     | 1596+50                 | to        | 1642+50      |            |
| Total Area          | 47.3                    | ac   |                         |                           |                         |     |                         |           |              |            |
| CURVE NUMBER CALCUA | ATION:                  |      |                         |                           |                         |     |                         |           |              |            |
|                     | TYPE A SOILS            |      | TYPE B SO               | TYPE B SOILS TYPE C SOILS |                         | ILS | TYPE D SOILS            |           | CN*A         | TOTAL AREA |
| LAND USE            | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN        | ur A         | TOTALANDA  |
| Impvervious         | 9.29                    | 98   |                         |                           |                         |     |                         |           | 910.71       | 9.2        |
|                     |                         |      | 3                       | 1 1                       |                         |     |                         |           | 4444 70      | 20 54      |

|                         | AREA (ft <sup>+</sup> ) |    | AREA (ft <sup>2</sup> ) | CN | AREA (ft*) | CN | AREA (ft <sup>-</sup> ) | CN     |         |       |
|-------------------------|-------------------------|----|-------------------------|----|------------|----|-------------------------|--------|---------|-------|
| Impvervious             | 9.29                    | 98 |                         |    |            |    |                         |        | 910.71  | 9.29  |
| Grass                   | 28.51                   | 39 |                         |    |            |    |                         |        | 1111.78 | 28.51 |
| Pond Site Pre Condition | 9.50                    | 39 |                         |    |            |    |                         |        | 370.50  | 9.50  |
|                         |                         |    |                         |    |            |    |                         |        | 0.00    | 0.00  |
|                         |                         |    |                         |    |            |    |                         |        | 0.00    | 0.00  |
|                         |                         |    |                         |    |            |    |                         |        | 0.00    | 0.00  |
|                         |                         |    |                         |    |            |    |                         |        | 0.00    | 0.00  |
|                         |                         |    |                         |    |            |    |                         |        | 0.00    | 0.00  |
| TOTALS                  | 47.3                    |    | 0                       |    | 0          |    | 0                       |        | 2392.98 | 47.3  |
|                         |                         |    |                         |    |            |    | WEIGH                   | TED CN |         | 51    |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 9.0 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 37.8 ft <sup>2</sup> |
|-------------------|----------------------|
| Pond Parcel Area  | 9.50 ft <sup>2</sup> |
| Total Area        | 47.3 ft <sup>2</sup> |

| Potential Abstraction (S) = | 9.8 |
|-----------------------------|-----|
| S = (1000/CN) - 10          |     |

Estimated Runoff Volume = 35.63 ac-ft Peak Volume = A x Q

1596+50

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UN A    | TOTAL AREA |
| Impervious             | 28.51                   | 98  |                         |    |                         |    |                         |        | 2794.21 | 28.51      |
| Grass                  | 9.29                    | 39  |                         |    |                         |    |                         |        | 362.22  | 9.29       |
| Pond Site (Pervious)   | 4.00                    | 39  |                         |    |                         |    |                         |        | 156.00  | 4.00       |
| Pond Site (Impervious) | 5.50                    | 100 |                         |    |                         |    |                         |        | 550.00  | 5.50       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 47.3                    |     | 0                       |    | 0                       |    | 0                       |        | 3862.43 | 47.3       |
|                        |                         |     |                         |    |                         | ·! | WEIGH                   | TED CN |         | 82         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.5 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 2.2 S = (1000/CN) - 10

Estimated Runoff Volume = 57.05 ac-ft Peak Volume = A x Q

**Basin Limits** 1642+50 to

Pond Name: 13-3 Date: 2/28/2024

# POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | 37.80 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|--------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Weighted C                                 |                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Impervious                           | 0.95                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.51 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Total Pervious                             | 0.20                                                                                                                                                                                                                                                                                                                                                                                                                       | 9.29 ac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Outstanding FL Water (Y/N)[multiply x 1.5] |                                                                                                                                                                                                                                                                                                                                                                                                                            | N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.41 ac-ft ] (whichow                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ver is greater)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| •                                          |                                                                                                                                                                                                                                                                                                                                                                                                                            | 1.58 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | fer is greatery                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | 2.41 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nated Peak Attenuation Volume (EPAV):      |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Existing Runoff Volume                     |                                                                                                                                                                                                                                                                                                                                                                                                                            | 35.63 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Proposed Runoff Volume                     |                                                                                                                                                                                                                                                                                                                                                                                                                            | 57.05 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            | 2                                                                                                                                                                                                                                                                                                                                                                                                                          | 21.42 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | 0.00 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TOTALS                                     | STORAGE                                                                                                                                                                                                                                                                                                                                                                                                                    | 21.42 ac-ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| nated Pond Configuration:                  |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| -                                          |                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Maintenance Berm Width                     | 20.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                    | Freeboard                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1.0 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| L/W Ratio                                  | 2.0                                                                                                                                                                                                                                                                                                                                                                                                                        | Side Slopes (1:H)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 4.0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                            | 1.5 ft                                                                                                                                                                                                                                                                                                                                                                                                                     | Wet/Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Dry                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                            |                                                                                                                                                                                                                                                                                                                                                                                                                            | Assumed Control EL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 60.00 ft                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                            | Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area)<br>mated Peak Attenuation Volume (EPAV):<br>Existing Runoff Volume<br>Proposed Runoff Volume<br>EPAV = Proposed Runoff - Existing Runoff Volume<br>Floodplain Comp<br>TOTAL S<br>mated Pond Configuration:<br>Maintenance Berm Width | Weighted C       Total Impervious       0.95         Total Pervious       0.20         Outstanding FL Water (Y/N)[multiply x 1.5]       Image: Comparison of the state of th | Weighted C       0.77         Total Impervious       0.95         Total Pervious       0.20         Outstanding FL Water (Y/N)[multiply x 1.5]       N         Required Treatment (Runoff from 1" Rainfall)       2.41 ac-ft         Required Treatment (1/2" over Area)       1.58 ac-ft         Attenuation Volume (EPAV):       2.41 ac-ft         Existing Runoff Volume       35.63 ac-ft         Proposed Runoff Volume       57.05 ac-ft         EPAV = Proposed Runoff - Existing Runoff Volume       21.42 ac-ft         Floodplain Compensation       0.00 ac-ft         TOTAL STORAGE       21.42 ac-ft         Maintenance Berm Width       2.0         L/W Ratio       2.0         Maximum Treatment Volume Depth       1.5 |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 651 ft  |
|---------------|---------|
| WTOP OF SLOPE | 326 ft  |
| Area          | 4.87 ac |

| LSITE | 830 ft  |
|-------|---------|
| WSITE | 439 ft  |
| Area  | 8.36 ac |

### Pond 13-3 0

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | <b>Cumulative</b> | Notes  |
|-----|----------------|-------------|----------------|-------------------|--------|
| GIS | 60             | 198950      | 0.0            | 0.0               | Soil 9 |
| GIS | 65             | 235744      | 1086735.0      | 1086735.0         |        |

### Cumulative Ret (ac-ft) Below Freeboard

24.95

Pond Area 5.4

### **I-75 Pond Siting** FPID: 452074-2-32-01

|                     |            | Р    | ond Name: 14-1/            | 15-1                    |    | Full                    | Typic    | al Section W | idth       |
|---------------------|------------|------|----------------------------|-------------------------|----|-------------------------|----------|--------------|------------|
|                     |            |      | Date: 2/28/                | 2024                    |    |                         |          |              |            |
| PRE-DEVELOPMENT R   |            | RAME | TERS                       |                         |    |                         |          |              |            |
| Onsite Basin Area   | 35.15      | ac   |                            |                         |    | Ba                      | asin Lin | nits         |            |
| Pond Parcel Area    | 9.00       | ас   |                            |                         |    | 1642+50                 | to       | 1684+80      |            |
| Total Area          | 44.15      | ас   |                            |                         |    |                         |          |              |            |
| CURVE NUMBER CALCUA | TION:      |      |                            |                         |    |                         |          |              |            |
|                     | TYPE A SOL | LS   | TYPE B SOILS               | ILS TYPE C SOILS        |    | TYPE D SOILS            |          | CN*A         | TOTAL AREA |
| LAND USE            | AREA (82)  | CN   | AREA (ft <sup>2</sup> ) CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN       | 1            |            |

|                         | TYPE A SO               | als | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         |            |
| Impvervious             | 8.55                    | 98  |                         |    |                         |    |                         |        | 837.45  | 8.55       |
|                         | 26.60                   | 39  |                         |    |                         |    |                         |        | 1037.58 | 26.60      |
| Grass                   | 9.00                    | 39  |                         |    |                         |    |                         |        | 351.00  | 9.00       |
| Pond Site Pre Condition | 3.00                    | 33  |                         |    |                         | 1  |                         |        | 0.00    | 0.00       |
|                         | _                       |     |                         |    |                         | -  |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         | 1  |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         | 1  |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         | -  |                         | -  |                         |        | 0.00    | 0.00       |
| TOTALS                  | 44.15                   |     | 0                       |    | 0                       |    | 0                       |        | 2226.03 | 44.15      |
| TUTALS                  | 77,13                   |     |                         | -  |                         |    | WEIGH                   | TED CN |         | 50         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 9.0 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

# POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 35.15 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 9,00 ft <sup>2</sup>  |
| Total Area        | 44.15 ft <sup>2</sup> |

#### Potential Abstraction (S) = 9.8 S = (1000/CN) - 10

Estimated Runoff Volume = ac-ft 33.13 Peak Volume = A x Q

> **Basin Limits** 1684+80 1642+50 to

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |      | TYPE B SOILS            |    | TYPE C SOILS            |     | TYPE D SOILS            |                 | CN*A    | TOTAL AREA |
|------------------------|-------------------------|------|-------------------------|----|-------------------------|-----|-------------------------|-----------------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | I CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN              | CIT A   | Territe .  |
| Important              | 26.22                   | 98   |                         |    |                         |     |                         |                 | 2569.46 | 26.22      |
| Impervious             |                         | 39   |                         |    |                         |     |                         |                 | 348.31  | 8.93       |
| Grass                  | 8.93                    |      |                         |    |                         |     |                         |                 | 136.50  | 3.50       |
| Pond Site (Pervious)   | 3.50                    | 39   |                         |    |                         |     |                         | +               | 500.00  | 5.00       |
| Pond Site (Impervious) | 5.00                    | 100  |                         |    |                         |     |                         | $ \rightarrow $ |         | 0.00       |
|                        |                         |      |                         |    |                         |     |                         |                 | 0.00    |            |
|                        |                         |      |                         |    |                         |     |                         |                 | 0.00    | 0.00       |
|                        |                         | 1-1  |                         |    |                         |     |                         |                 | 0.00    | 0.00       |
|                        |                         |      |                         |    |                         |     |                         |                 | 0.00    | 0.00       |
| TOTALS                 | 43.65                   |      | 0                       |    | 0                       |     | 0                       |                 | 3554.27 | 43.65      |
| TUTALS                 | -5.05                   |      |                         | hd |                         | \$1 | WEIGH                   | TED CN          |         | 81         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.4 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 2.3 S = (1000/CN) - 10

Estimated Runoff Volume = ac-ft 52.53 Peak Volume = A x Q

# Pond Name: 14-1/15-1 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |           | 35.15 ac      |                          |  |  |  |
|--------------------------------------------------|-----------|---------------|--------------------------|--|--|--|
| Weighted C                                       |           | 0.76          |                          |  |  |  |
| Total Impervious                                 | 0.95      | 26.22 ac      |                          |  |  |  |
| Total Pervious                                   | 0.20      | 8.93 ac       |                          |  |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |           | N             |                          |  |  |  |
| Required Treatment (Runoff from 1" Rainfall)     |           | 2.22 ac-ft ך  | which awar is graatar)   |  |  |  |
| Required Treatment (1/2" over Area)              |           | 1.46 ac-ft    | - (whichever is greater) |  |  |  |
|                                                  |           | 2.22 ac-ft    |                          |  |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):     |           |               |                          |  |  |  |
| Existing Runoff Volume                           |           | 33.13 ac-ft   |                          |  |  |  |
| Proposed Runoff Volume                           |           | 52.53 ac-ft   |                          |  |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volum   | e         | 19.40 ac-ft   |                          |  |  |  |
| Floodplain Com                                   | pensation | 0.00 ac-ft    |                          |  |  |  |
| TOTAL                                            | STORAGE   | 19.40 ac-ft   |                          |  |  |  |
| 3) Estimated Pond Configuration:                 |           |               |                          |  |  |  |
| Maintenance Berm Width                           | 20.0 ft   | Freeboard     | 1.0 ft                   |  |  |  |
| L/W Ratio                                        | 2.0       | Side Slopes ( | L:H) 4.0                 |  |  |  |
| Maximum Treatment Volume Depth                   | 1.5 ft    | Wet/Dry       | Dry                      |  |  |  |
| Maximum Pond Depth Below Freeboard               | 5.0 ft    | Assumed Cor   | trol EL ft               |  |  |  |
| 4) Estimated Pond Dimensions Including Freeboard |           |               |                          |  |  |  |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 621 ft  |
|---------------|---------|
| WTOP OF SLOPE | 311 ft  |
| Area          | 4.43 ac |

| LSITE | 794 ft  |
|-------|---------|
| WSITE | 421 ft  |
| Area  | 7.67 ac |

# Pond 14-1/15-1

|     | <u>Contour</u> | Area   | Storage   | <u>Cumulative</u> | <u>Notes</u> |
|-----|----------------|--------|-----------|-------------------|--------------|
| GIS | 54             | 164786 | 0.0       | 0.0               |              |
| GIS | 60             | 225022 | 1169424.0 | 1169424.0         |              |

Cumulative Ret (ac-ft) Below Freeboard 26.85

> Pond Area 5.2

# I-75 Pond Siting

FPID: 452074-2-32-01

| Pond Name:                | 14-2      | Full    | Typic    | al Section Widt | th |
|---------------------------|-----------|---------|----------|-----------------|----|
| Date:                     | 2/28/2024 |         |          |                 |    |
| <b>FRUNOFF PARAMETERS</b> |           |         |          |                 |    |
| 18.8 ac                   |           | Ba      | isin Lin | nits            |    |
| 5.00 ac                   |           | 1642+50 | to       | 1669+80         |    |

### **PRE-DEVELOPMENT**

| Onsite Basin Area | 18.8 ac |
|-------------------|---------|
| Pond Parcel Area  | 5.00 ac |
| Total Area        | 23.8 ac |

### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SOILS            |    | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CN-A    | TOTAL AREA |
| Impvervious             | 5.52                    | 98 |                         | 1 1 |                         |    |                         |        | 540.48  | 5.52       |
| Grass                   | 13.28                   | 39 |                         |     |                         |    |                         |        | 518.11  | 13.28      |
| Pond Site Pre Condition | 5.00                    | 39 |                         |     |                         |    |                         |        | 195.00  | 5.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 23.8                    | 1  | 0                       |     | 0                       |    | 0                       |        | 1253.59 | 23.8       |
|                         |                         |    |                         | A   |                         |    | WEIGH                   | TED CN |         | 53         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 9.5 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

# **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 18.8 ft <sup>2</sup> |
|-------------------|----------------------|
| Pond Parcel Area  | 5.00 ft <sup>2</sup> |
| Total Area        | 23.8 ft <sup>2</sup> |

| Estimated Runoff Volume = | 18.78 |
|---------------------------|-------|
| Peak Volume = A x Q       |       |
|                           |       |

S = (1000/CN) - 10

Potential Abstraction (S) =

#### **Basin Limits** 1642+50 1669+80 to

9.0

ac-ft

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | TYPE A SOILS |                         | TYPE B SOILS |                         | TYPE C SOILS |                         | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|--------------|-------------------------|--------------|-------------------------|--------------|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN     | CN*A    | IOTAL AREA |
| Impervious             | 16.92                   | 98           |                         |              |                         |              |                         |        | 1658.31 | 16.92      |
| Grass                  | 1.88                    | 39           |                         |              |                         |              |                         |        | 73.26   | 1.88       |
| Pond Site (Pervious)   | 2.00                    | 39           |                         |              |                         |              |                         |        | 78.00   | 2.00       |
| Pond Site (Impervious) | 3.00                    | 100          |                         |              |                         |              |                         |        | 300.00  | 3.00       |
|                        |                         |              |                         | 1 1          |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         |              |                         |              | l                       |              |                         |        | 0.00    | 0.00       |
|                        |                         |              |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         |              |                         |              |                         |              |                         |        | 0.00    | 0.00       |
| TOTALS                 | 23.8                    |              | 0                       |              | 0                       |              | 0                       |        | 2109.57 | 23.8       |
|                        |                         | 1            |                         | 645          |                         |              | WEIGH                   | TED CN |         | 89         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

Estimated Runoff Volume = 30.65 ac-ft Peak Volume = A x Q

# Pond Name: 14-2 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W       |                       |              | 18.80 ac                 |                        |
|-----------------------|-----------------------|--------------|--------------------------|------------------------|
| Weighted C            |                       |              | 0.88                     |                        |
|                       | Total Impervious      | 0.95         | 16.92 ac                 |                        |
|                       | Total Pervious        | 0.20         | 1.88 ac                  |                        |
| Outstanding FL Water  | (Y/N)[multiply x 1.5] |              | N                        |                        |
| Required Treatment (R |                       |              | 1.37 ac-ft               | (whichever is greater) |
| Required Treatment (1 |                       | 0.78 ac-ft 🔎 | (will chever is Breater) |                        |
|                       |                       |              | 1.37 ac-ft               |                        |
|                       |                       |              |                          |                        |

# 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 18.78 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 30.65 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 11.87 ac-ft |
| Floodplain Compensation                         | 0.00 ac-ft  |
| TOTAL STORAGE                                   | 11.87 ac-ft |

# 3) Estimated Pond Configuration:

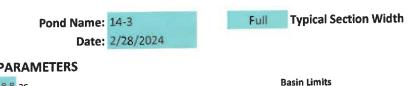
| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 6.0 ft  | Assumed Control EL | 62.00 ft |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 456 ft  |
|---------------|---------|
| WTOP OF SLOPE | 228 ft  |
| Area          | 2.38 ac |

| LSITE | 595 ft  |
|-------|---------|
| WSITE | 321 ft  |
| Area  | 4.39 ac |

### <u>Pond</u> <u>14-2</u> 0


|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | <b>Cumulative</b> | <u>N</u> |
|-----|----------------|-------------|----------------|-------------------|----------|
| GIS | 62             | 99303       | 0.0            | 0.0               |          |
| GIS | 67.6           | 133822      | 652750.0       | 652750.0          |          |

### Cumulative Ret (ac-ft) Below Freeboard

14.99

Pond Area 3.1

### I-75 Pond Siting FPID: 452074-2-32-01



### **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 18.8 | ас |
|-------------------|------|----|
| Pond Parcel Area  | 5.00 | ac |
| Total Area        | 23.8 | ас |



### **CURVE NUMBER CALCUATION:**

| 1                       | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | di A    |            |
| Impvervious             | 5.52                    | 98  |                         |    |                         |    |                         |        | 540.48  | 5.52       |
|                         | 13.28                   | 39  |                         |    |                         |    |                         |        | 518.11  | 13.28      |
| Grass                   | 5.00                    | 39  |                         |    |                         |    |                         |        | 195.00  | 5.00       |
| Pond Site Pre Condition | 5.00                    | 33  |                         |    |                         | +  |                         | +      | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 23.8                    |     | 0                       |    | 0                       |    | 0                       |        | 1253.59 | 23.8       |
| TOTALS                  | 20.0                    |     |                         | L  |                         |    | WEIGH                   | TED CN |         | 53         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 9.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

# POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 18.8 ft <sup>2</sup> |
|-------------------|----------------------|
| Pond Parcel Area  | 5.00 ft <sup>2</sup> |
| Total Area        | 23.8 ft <sup>2</sup> |

### Potential Abstraction (S) = 9.0 S = (1000/CN) - 10

Estimated Runoff Volume = 18.78 ac-ft Peak Volume = A x Q

> Basin Limits 1642+50 to 1669+80

# **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS TYPE C SOILS |     | TYPE D SOILS            |     | CN*A                    | TOTAL AREA |         |          |
|------------------------|-------------------------|-----|---------------------------|-----|-------------------------|-----|-------------------------|------------|---------|----------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> )   | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN         |         | TOTALTIN |
| Impervious             | 16.92                   | 98  |                           |     |                         |     |                         |            | 1658.31 | 16.92    |
|                        | 1.88                    | 39  |                           |     |                         |     |                         |            | 73.26   | 1.88     |
| Grass                  | 2.00                    | 39  |                           |     | 1                       |     |                         |            | 78.00   | 2.00     |
| Pond Site (Pervious)   | 3.00                    | 100 |                           |     |                         |     |                         |            | 300.00  | 3.00     |
| Pond Site (Impervious) | 5.00                    | 100 |                           |     |                         |     |                         |            | 0.00    | 0.00     |
|                        |                         | +   |                           |     |                         | 1-1 |                         |            | 0.00    | 0.00     |
|                        |                         | +-+ |                           |     |                         |     |                         |            | 0.00    | 0.00     |
|                        |                         | ++  |                           | +-+ |                         |     |                         |            | 0.00    | 0.00     |
| TOTALS                 | 23.8                    | +   | 0                         |     | 0                       | -   | 0                       |            | 2109.57 | 23.8     |
| TOTALS                 | 23.0                    |     |                           | Å   |                         |     | WEIGH                   | TED CN     |         | 89       |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

Estimated Runoff Volume = 30.65 ac-ft Peak Volume = A x Q

Pond Name: 14-3 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |            | 18.80 ac    |   |                        |
|-------------------------------------------------|------------|-------------|---|------------------------|
| Weighted C                                      |            | 0.88        |   |                        |
| Total Impervious                                | 0.95       | 16.92 ac    |   |                        |
| Total Pervious                                  | 0.20       | 1.88 ac     |   |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |            | N           |   |                        |
| Required Treatment (Runoff from 1" Rainfall)    |            | 1.37 ac-ft  | l | (whichever is greater) |
| Required Treatment (1/2" over Area)             |            | 0.78 ac-ft  | Ţ | (whichever is greater) |
|                                                 |            | 1.37 ac-ft  |   |                        |
| 2) Estimated Peak Attenuation Volume (EPAV):    |            |             |   |                        |
| Existing Runoff Volume                          |            | 18.78 ac-ft |   |                        |
| Proposed Runoff Volume                          |            | 30.65 ac-ft |   |                        |
| EPAV = Proposed Runoff - Existing Runoff Volume |            | 11.87 ac-ft |   |                        |
| Floodplain Compension                           | 0.00 ac-ft |             |   |                        |
| TOTAL STO                                       | RAGE       | 11.87 ac-ft |   |                        |
| 3) Estimated Pond Configuration:                |            |             |   |                        |

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 6.0 ft  | Assumed Control EL | 62.00 ft |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 456 ft  |
|---------------|---------|
| WTOP OF SLOPE | 228 ft  |
| Area          | 2.38 ac |

| LSITE | 595 ft  |
|-------|---------|
| WSITE | 321 ft  |
| Area  | 4.39 ac |

#### <u>14-3</u> 0 Pond <u>Notes</u> <u>Area</u> Storage Cumulative <u>Contour</u> 0.0 0.0 90258 62 GIS 592454.8 592454.8 67.6 121333 GIS

# Cumulative Ret (ac-ft) Below Freeboard

13.60

Pond Area 2.8

# I-75 Pond Siting

FPID: 452074-2-32-01



### **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 35.15 ac |
|-------------------|----------|
| Pond Parcel Area  | 10.23 ac |
| Total Area        | 45.38 ac |

| Basin Limits |    |         |  |  |  |  |  |
|--------------|----|---------|--|--|--|--|--|
| 1642+50      | to | 1684+80 |  |  |  |  |  |

### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | TYPE A SOILS TYPE B SOILS |                         | ILS                                      | TYPE C SOILS            |           | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|---------------------------|-------------------------|------------------------------------------|-------------------------|-----------|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN                        | AREA (ft <sup>2</sup> ) | CN                                       | AREA (ft <sup>2</sup> ) | CN        | AREA (ft <sup>2</sup> ) | CN     | UTA     | TOTALANEA  |
| Impvervious             | 8.55                    | 98                        |                         |                                          |                         |           |                         |        | 837.45  | 8.55       |
| Grass                   | 26.60                   | 39                        |                         |                                          |                         |           |                         |        | 1037.58 | 26.60      |
| Pond Site Pre Condition | 10.23                   | 39                        |                         |                                          |                         |           |                         |        | 398.97  | 10.23      |
|                         |                         |                           |                         |                                          |                         |           |                         |        | 0.00    | 0.00       |
|                         |                         |                           |                         |                                          |                         |           |                         |        | 0.00    | 0.00       |
|                         |                         |                           |                         |                                          |                         |           |                         |        | 0.00    | 0.00       |
|                         |                         |                           |                         |                                          |                         |           |                         |        | 0.00    | 0.00       |
|                         |                         |                           |                         |                                          |                         |           |                         |        | 0.00    | 0.00       |
| TOTALS                  | 45.38                   |                           | 0                       |                                          | 0                       |           | 0                       |        | 2274.00 | 45.38      |
|                         |                         |                           |                         | -10-00-00-00-00-00-00-00-00-00-00-00-00- |                         | · · · · · | WEIGH                   | TED CN |         | 50         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 8.9 in Q =  $(P - 0.2S)^2/(P + 0.8S)$

### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 35.15 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 10.23 ft <sup>2</sup> |
| Total Area        | 45.38 ft <sup>2</sup> |

| Basin Limits |  |
|--------------|--|

Potential Abstraction (S) =

Estimated Runoff Volume =

S = (1000/CN) - 10

Peak Volume = A x Q

1642+50 to 1684+80

10.0

33.81

ac-ft

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|----|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | CNTA    | IVIAL AREA |
| Impervious             | 26.22                   | 98  |                         |    |                         |    |                         |    | 2569.46 | 26.22      |
| Grass                  | 8.93                    | 39  |                         |    |                         |    |                         |    | 348.31  | 8.93       |
| Pond Site (Pervious)   | 2.80                    | 39  |                         |    |                         |    |                         |    | 109.20  | 2.80       |
| Pond Site (Impervious) | 7.43                    | 100 |                         |    |                         |    |                         |    | 743.00  | 7.43       |
|                        |                         |     |                         |    |                         |    |                         |    | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |    | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |    | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |    | 0.00    | 0.00       |
| TOTALS                 | 45.38                   |     | 0                       |    | 0                       |    | 0                       |    | 3769.97 | 45.38      |
|                        | WEIGHTED CN             |     |                         |    |                         | 83 |                         |    |         |            |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q)** = 14.7 in Q =  $(P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.0 S = (1000/CN) - 10

Estimated Runoff Volume = 55.51 ac-ft Peak Volume = A x Q

# Pond Name: 14-3/15-3 Date: 2/28/2024

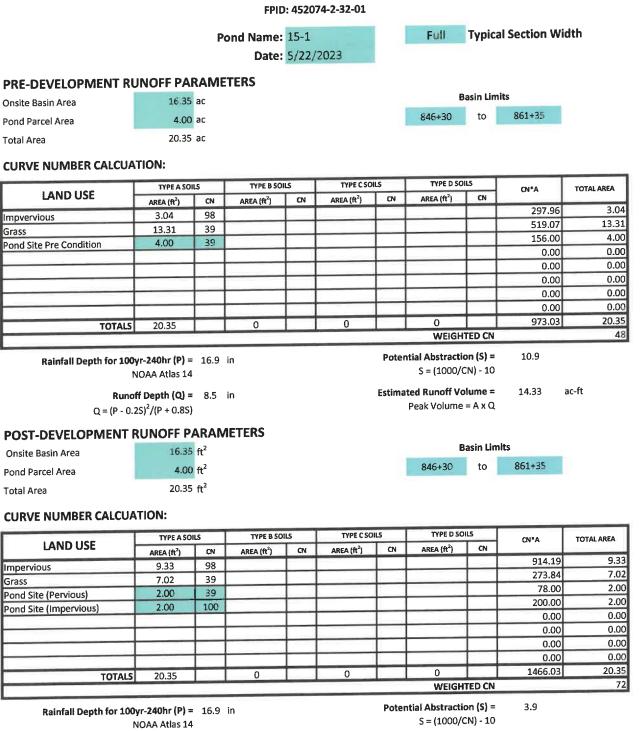
### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area) |                                    | 35.15 ac<br>0.76<br>26.22 ac<br>8.93 ac<br>N<br>2.22 ac-ft<br>1.46 ac-ft<br><b>2.22 ac-ft</b> | (whichever is greater) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------|------------------------|
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                                                                                                             |                                    |                                                                                               |                        |
| Existing Runoff Volume<br>Proposed Runoff Volume<br>EPAV = Proposed Runoff - Existing Runoff Volume                                                                                                      | e                                  | 33.81 ac-ft<br>55.51 ac-ft<br><b>21.71 ac-ft</b>                                              |                        |
| Floodplain Com                                                                                                                                                                                           | pensation                          | 0.00 ac-ft                                                                                    |                        |
| TOTAL 3) Estimated Pond Configuration:                                                                                                                                                                   | STORAGE                            | 21.71 ac-ft                                                                                   |                        |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard                                                                                              | 20.0 ft<br>2.0<br>1.5 ft<br>5.0 ft | Side Slope<br>Wet/Dry                                                                         | s (1:H) 4.0<br>Dry     |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 656 ft  |
|---------------|---------|
| WTOP OF SLOPE | 328 ft  |
| Area          | 4.93 ac |


| LSITE | 835 ft  |
|-------|---------|
| WSITE | 441 ft  |
| Area  | 8.46 ac |

# Pond 14-3 & 15-3

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | Cumulative        | Notes     |
|-----|----------------|-------------|----------------|-------------------|-----------|
| GIS | 60             | 90258       | 0.0            | 0.0               |           |
| GIS | 65             | 135720      | 564945.0       | 564945.0          |           |
| GIS | 68             | 162350      | 447105.0       | 1012050.0         |           |
|     |                |             | Cumulative     | Ret (ac-ft) Below | Freeboard |
|     |                |             |                | 23.23             |           |
|     |                |             |                |                   |           |

Pond Area 3.7 6

# I-75 Pond Siting



Estimated Runoff Volume = 22.04 Peak Volume = A x Q

ac-ft

Runoff Depth (Q) = 13.0 in

 $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

# Pond Name: 15-1 Date: 5/22/2023

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                              |      | 16.35 ac     |                        |
|----------------------------------------------|------|--------------|------------------------|
| Weighted C                                   |      | 0.63         |                        |
| Total Impervious                             | 0.95 | 9.33 ac      |                        |
| Total Pervious                               | 0.20 | 7.02 ac      |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]   |      | N            |                        |
| Required Treatment (Runoff from 1" Rainfall) |      | 0.86 ac-ft   | (whichever is greater) |
| Required Treatment (1/2" over Area)          |      | 0.68 ac-ft 🕇 | (winchever is Breater) |
|                                              |      | 0.86 ac-ft   |                        |

### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                  |               | 14.33 ac-ft |
|-----------------------------------------|---------------|-------------|
| Proposed Runoff Volume                  |               | 22.04 ac-ft |
| EPAV = Proposed Runoff - Existing Runof | f Volume      | 7.71 ac-ft  |
| Flood Plain Compensation                |               | 0.00 ac-ft  |
|                                         | TOTAL STORAGE | 7.71 ac-ft  |
| -to d Daniel Configurations             |               |             |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 5.0 ft  | Assumed Control EL | 72.00 ft |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 402 ft  |
|---------------|---------|
| WTOP OF SLOPE | 201 ft  |
| Area          | 1.85 ac |

| LSITE | 530 ft  |
|-------|---------|
| WSITE | 289 ft  |
| Area  | 3.52 ac |

|            | Pond                       | <u>15-1</u>                    | 0                                 |                                      |              |
|------------|----------------------------|--------------------------------|-----------------------------------|--------------------------------------|--------------|
| GIS<br>GIS | <u>Contour</u><br>72<br>77 | <u>Area</u><br>87734<br>111560 | <u>Storage</u><br>0.0<br>498235.0 | <u>Cumulative</u><br>0.0<br>498235.0 | <u>Notes</u> |
|            |                            |                                | Cumulative F                      | Ret (ac-ft) Below Fr<br>11.44        | eeboard      |

Pond Area 2.6

# I-75 Pond Siting

FPID: 452074-2-32-01

Pond Name: 15-2 Full **Typical Section Width** Date: 2/28/2024

### **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 16.35 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.00  | ас |
| Total Area        | 20.35 | ас |

| Basin Limits |    |         |  |  |  |  |  |
|--------------|----|---------|--|--|--|--|--|
| 1669+80      | to | 1684+80 |  |  |  |  |  |

### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|--------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | ULA    | TUTAL AKEA |
| Impvervious             | 3.03                    | 98  |                         |    |                         |    |                         |        | 296.97 | 3.03       |
| Grass                   | 13.32                   | 39  |                         |    |                         |    |                         | II     | 519.47 | 13.32      |
| Pond Site Pre Condition | 4.00                    | 39  |                         |    |                         |    |                         |        | 156.00 | 4.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
| TOTALS                  | 20.35                   |     | 0                       |    | 0                       |    | 0                       |        | 972.44 | 20.35      |
|                         |                         |     |                         |    |                         |    | WEIGH                   | TED CN |        | 48         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 8.4 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 16.35 ft <sup>2</sup> |  |
|-------------------|-----------------------|--|
| Pond Parcel Area  | 4.00 ft <sup>2</sup>  |  |
| Total Area        | 20.35 ft <sup>2</sup> |  |

| Pe | ak Volu | me = A | хQ |  |
|----|---------|--------|----|--|
|    |         |        |    |  |
|    |         |        |    |  |

**Basin Limits** 1669+80 1684+80 to

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UNIA    | TOTALAREA  |
| Impervious             | 9.30                    | 98  |                         |    | 0                       |    |                         |        | 911.16  | 9.30       |
| Grass                  | 7.05                    | 39  |                         |    |                         |    |                         |        | 275.05  | 7.05       |
| Pond Site (Pervious)   | 2.00                    | 39  |                         |    |                         |    |                         |        | 78.00   | 2.00       |
| Pond Site (Impervious) | 2.00                    | 100 |                         |    | I                       |    |                         |        | 200.00  | 2.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 20.35                   |     | 0                       |    | 0                       |    | 0                       |        | 1464.20 | 20.35      |
|                        |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 72         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 13.0 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 3.9 S = (1000/CN) - 10

Estimated Runoff Volume = 22.01 ac-ft Peak Volume = A x Q

S = (1000/CN) - 10

Potential Abstraction (S) =

Estimated Runoff Volume = 14.32 ac-ft

# Pond Name: 15-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W       |                         |      | 16.35 ac     |                        |
|-----------------------|-------------------------|------|--------------|------------------------|
| Weighted C            |                         |      | 0.63         |                        |
| -                     | Total Impervious        | 0.95 | 9.30 ac      |                        |
|                       | Total Pervious          | 0.20 | 7.05 ac      |                        |
| Outstanding FL Water  | (Y/N)[multiply x 1.5]   |      | N            |                        |
| Required Treatment (R | unoff from 1" Rainfall) |      | 0.85 ac-ft _ | (whichever is greater) |
| Required Treatment (1 | /2" over Area)          |      | 0.68 ac-ft 了 | (whenever is Breater)  |
|                       |                         |      | 0.85 ac-ft   |                        |
|                       |                         |      |              |                        |

# 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                   |               | 14.32 ac-ft |
|------------------------------------------|---------------|-------------|
| Proposed Runoff Volume                   |               | 22.01 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff | f Volume      | 7.69 ac-ft  |
| Flood Plain Compensation                 |               | 0.00 ac-ft  |
|                                          | TOTAL STORAGE | 7.69 ac-ft  |
|                                          |               |             |

### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 5.0 ft  | Assumed Control EL | 72.00 ft |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 402 ft  |
|---------------|---------|
| WTOP OF SLOPE | 201 ft  |
| Area          | 1.85 ac |

| LSITE | 530 ft  |
|-------|---------|
| WSITE | 289 ft  |
| Area  | 3.52 ac |

# <u>Pond 15-2</u> 0

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | Cumulative |  |
|-----|----------------|-------------|----------------|------------|--|
| GIS | 72             | 74073       | 0.0            | 0.0        |  |
| GIS | 77             | 97710       | 429457.5       | 429457.5   |  |

### Cumulative Ret (ac-ft) Below Freeboard

9.86

Pond Area 2.2

|                         |                                                      |                   | I-                      | 75 Pon | d Siting<br>74-2-32-01  |        | ,                                   |                 |                  |               |
|-------------------------|------------------------------------------------------|-------------------|-------------------------|--------|-------------------------|--------|-------------------------------------|-----------------|------------------|---------------|
|                         |                                                      | P                 | ond Name:               |        | / 2 02 01               |        | Full                                | Туріса          | al Section Wi    | dth           |
|                         |                                                      | •                 |                         | 5/22/  | 2023                    |        |                                     |                 |                  |               |
|                         |                                                      |                   |                         |        |                         |        |                                     |                 |                  |               |
| PRE-DEVELOPMENT RU      |                                                      |                   | IEKS                    |        |                         |        |                                     | asin Lim        | i++              |               |
| Onsite Basin Area       | 16.35                                                | ac                |                         |        |                         |        |                                     |                 |                  |               |
| Pond Parcel Area        | 4.00                                                 | ) ac              |                         |        |                         |        | 846+30                              | to              | 861+35           |               |
| Total Area              | 20.35                                                | ac ac             |                         |        |                         |        |                                     |                 |                  |               |
| CURVE NUMBER CALCUA     | TION:                                                |                   |                         |        |                         |        |                                     |                 |                  |               |
|                         | TYPE A SO                                            | ILS               | TYPE B SO               | ILS    | TYPE C SO               | ILS    | TYPE D SO                           | ILS             | CN*A             | TOTAL AREA    |
| LAND USE                | AREA (ft <sup>2</sup> )                              | CN                | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )             | CN              |                  |               |
| Impvervious             | 3.04                                                 | 98                |                         |        |                         |        |                                     |                 | 297.96           | 3.04          |
| Grass                   | 13.31                                                | 39                |                         |        |                         | -      |                                     | $ \rightarrow $ | 519.07<br>156.00 | 13.31<br>4.00 |
| Pond Site Pre Condition | 4.00                                                 | 39                |                         | -      |                         |        |                                     | +               | 0.00             | 0.00          |
|                         |                                                      |                   |                         |        |                         | -      |                                     |                 | 0.00             | 0.00          |
|                         |                                                      |                   |                         |        |                         | -      |                                     |                 | 0.00             | 0.00          |
|                         |                                                      |                   |                         | +      |                         |        |                                     |                 | 0.00             | 0.00          |
|                         |                                                      |                   |                         |        |                         |        |                                     |                 | 0.00             | 0.00          |
| TOTALS                  | 20.35                                                |                   | 0                       |        | 0                       | 1      | 0                                   |                 | 973.03           | 20.35         |
|                         |                                                      |                   |                         |        |                         |        | WEIGH                               | TED CN          |                  | 48            |
| Rainfall Depth for 100  | <b>yr-240hr (P) =</b><br>NOAA Atlas 14               |                   | in                      |        |                         | Pote   | ntial Abstraction<br>S = (1000/0    |                 | 10.9             |               |
|                         | <b>ff Depth (Q)</b> =<br>25) <sup>2</sup> /(P + 0.8S |                   | in                      |        |                         | Estima | <b>ted Runoff Vo</b><br>Peak Volume |                 | 14.33            | ac-ft         |
| POST-DEVELOPMENT        | RUNOFF P                                             | ARAN              | IETERS                  |        |                         |        |                                     |                 |                  |               |
| Onsite Basin Area       | 16.35                                                | 5 ft <sup>2</sup> |                         |        |                         |        | B                                   | asin Lim        | its              |               |
| Pond Parcel Area        | 4.00                                                 | ) ft <sup>2</sup> |                         |        |                         |        | 846+30                              | to              | 861+35           |               |
| Total Area              | 20.35                                                | 5 ft <sup>2</sup> |                         |        |                         |        |                                     |                 |                  |               |
| CURVE NUMBER CALCUA     | TION:                                                |                   |                         |        |                         |        |                                     |                 |                  |               |

### POST-DE

| Onsite Basin Area | 16.35 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 4.00 ft <sup>2</sup>  |
| Total Area        | 20.35 ft <sup>2</sup> |

### **CURVE NUMBE**

|                        | TYPE A SC               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |           | TYPE D SOILS            |                 | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|-----------|-------------------------|-----------------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN        | AREA (ft <sup>2</sup> ) | CN              | Cit H   |            |
| Importious             | 9.33                    | 98  |                         |    |                         |           |                         |                 | 914.19  | 9.33       |
| Impervious             | 7.02                    | 39  |                         |    |                         |           |                         |                 | 273.84  | 7.02       |
| Grass                  |                         | 39  |                         |    |                         |           |                         |                 | 78.00   | 2.00       |
| Pond Site (Pervious)   | 2.00                    |     |                         |    |                         |           |                         |                 | 200.00  | 2.00       |
| Pond Site (Impervious) | 2.00                    | 100 |                         |    |                         |           |                         | +               | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |           |                         | +               |         | 0.00       |
|                        |                         |     |                         |    |                         |           |                         | $ \rightarrow $ | 0.00    |            |
|                        |                         |     |                         |    |                         |           |                         |                 | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |           |                         |                 | 0.00    | 0.00       |
| TOTALS                 | 20.35                   |     | 0                       |    | 0                       |           | 0                       |                 | 1466.03 | 20.35      |
| TURES                  | 20.33                   |     |                         | 1  |                         | Anima and | WEIGH                   | TED CN          |         | 72         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 13.0 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 3.9 S = (1000/CN) - 10

Estimated Runoff Volume = 22.04 ac-ft Peak Volume = A x Q

Pond Name: 15-3 Date: 5/22/2023

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                              |      | 16.35 ac   |   |                        |
|----------------------------------------------|------|------------|---|------------------------|
| Weighted C                                   |      | 0.63       |   |                        |
| Total Impervious                             | 0.95 | 9.33 ac    |   |                        |
| Total Pervious                               | 0.20 | 7.02 ac    |   |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]   |      | N          |   |                        |
| Required Treatment (Runoff from 1" Rainfall) |      | 0.86 ac-ft | l | (whichever is greater) |
| Required Treatment (1/2" over Area)          |      | 0.68 ac-ft | Ţ | (whichever is greater) |
|                                              |      | 0.86 ac-ft |   |                        |

# 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                   |               | 14.33 ac-ft |
|------------------------------------------|---------------|-------------|
| Proposed Runoff Volume                   |               | 22.04 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff | Volume        | 7.71 ac-ft  |
| Flood Plain Compensation                 |               | 0.00 ac-ft  |
|                                          | TOTAL STORAGE | 7.71 ac-ft  |
| ated Band Configurations                 |               |             |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 5.0 ft  | Assumed Control EL | 71.00 ft |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 402 ft  |
|---------------|---------|
| WTOP OF SLOPE | 201 ft  |
| Area          | 1.85 ac |

| LSITE | 530 ft  |
|-------|---------|
| WSITE | 289 ft  |
| Area  | 3.52 ac |

|            | Pond                       | <u>15-3</u>                   | 0                                 |                                      |              |
|------------|----------------------------|-------------------------------|-----------------------------------|--------------------------------------|--------------|
| GIS<br>GIS | <u>Contour</u><br>71<br>76 | <u>Area</u><br>72027<br>94340 | <u>Storage</u><br>0.0<br>415917.5 | <u>Cumulative</u><br>0.0<br>415917.5 | <u>Notes</u> |
|            |                            |                               | Cumulative I                      | Ret (ac-ft) Below Freebo             | bard         |

9.55

Pond Area 2.2

# I-75 Pond Siting

FPID: 452074-2-32-01

| Pond Name: | 16-1      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 31.45 ac |
|-------------------|----------|
| Pond Parcel Area  | 9.80 ac  |
| Total Area        | 41.25 ac |

| Basin Limits |    |         |  |  |  |  |
|--------------|----|---------|--|--|--|--|
| 1684+80      | to | 1722+00 |  |  |  |  |

### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SOILS            |    | TYPE B SOILS                          |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|----|---------------------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> )               | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UN'A    | TOTAL AREA |
| Impvervious             | 7.52                    | 98 |                                       |    |                         |    |                         |        | 736.48  | 7.52       |
| Grass                   | 23.93                   | 39 | · · · · · · · · · · · · · · · · · · · |    | ()                      |    |                         |        | 933.46  | 23.93      |
| Pond Site Pre Condition | 9.80                    | 39 |                                       |    |                         |    |                         |        | 382.20  | 9.80       |
|                         |                         |    |                                       |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                                       |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                                       |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                                       |    | (                       |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                                       |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 41.25                   |    | 0                                     |    | 0                       |    | 0                       |        | 2052.14 | 41.25      |
|                         |                         |    |                                       |    |                         |    | WEIGH                   | TED CN |         | 50         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 8.9 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

# POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 31.45 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 9.80 ft <sup>2</sup>  |
| Total Area        | 41.25 ft <sup>2</sup> |

| Estimated Runoff Volume = | 30.47 |
|---------------------------|-------|
| Peak Volume = A x Q       |       |

S = (1000/CN) - 10

Potential Abstraction (S) =

Basin Limits 1684+80 to 1722+00

10.1

ac-ft

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UNA     | TOTALAREA  |
| Impervious             | 23.06                   | 98  |                         |    |                         | 1  |                         |        | 2259.67 | 23.06      |
| Grass                  | 8.39                    | 39  |                         |    |                         |    |                         |        | 327.29  | 8.39       |
| Pond Site (Pervious)   | 5.80                    | 39  |                         |    |                         |    |                         |        | 226.20  | 5.80       |
| Pond Site (Impervious) | 4.00                    | 100 |                         |    |                         |    |                         |        | 400.00  | 4.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         | 1  |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 41.25                   |     | 0                       |    | 0                       |    | 0                       |        | 3213.16 | 41.25      |
|                        |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 78         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 13.9 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.8 S = (1000/CN) - 10

Estimated Runoff Volume = 47.83 ac-ft Peak Volume = A x Q

Pond Name: 16-1 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |                                                 | 31.45 ac          |                    |  |  |
|------------------------------------------------|-------------------------------------------------|-------------------|--------------------|--|--|
| Weighted C                                     |                                                 | 0.75              |                    |  |  |
| Total Impervious                               | 0.95                                            | 23.06 ac          |                    |  |  |
| Total Pervious                                 | 0.20                                            | 8.39 ac           |                    |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |                                                 | N                 |                    |  |  |
| Required Treatment (Runoff from 1" Rainfall)   |                                                 | 1.97 ac-ft        | chever is greater) |  |  |
| Required Treatment (1/2" over Area)            |                                                 | 1.31 ac-ft 🤳 🕻 🗰  |                    |  |  |
|                                                |                                                 | 1.97 ac-ft        |                    |  |  |
|                                                |                                                 |                   |                    |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |                                                 |                   |                    |  |  |
| Existing Runoff Volume                         |                                                 | 30.47 ac-ft       |                    |  |  |
| Proposed Runoff Volume                         |                                                 | 47.83 ac-ft       |                    |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volum | EPAV = Proposed Runoff - Existing Runoff Volume |                   |                    |  |  |
|                                                |                                                 | _                 |                    |  |  |
| Floodplain Com                                 | pensation                                       | 0.00 ac-ft        |                    |  |  |
| TOTAL                                          | STORAGE                                         | 17.36 ac-ft       |                    |  |  |
| 3) Estimated Pond Configuration:               |                                                 |                   |                    |  |  |
| Maintenance Berm Width                         | 20.0 ft                                         | Freeboard         | 1.0 ft             |  |  |
| L/W Ratio                                      | 2.0                                             | Side Slopes (1:H) | 4.0                |  |  |
| Maximum Treatment Volume Depth                 | 1.5 ft                                          | Wet/Dry           | Dry                |  |  |
| Maximum Pond Depth Below Freeboard             | 5.0 ft                                          | Assumed Contro    | l EL 71.00 ft      |  |  |
|                                                |                                                 |                   |                    |  |  |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 589 ft  |
|---------------|---------|
| WTOP OF SLOPE | 295 ft  |
| Area          | 3.99 ac |

| LSITE | 755 ft  |
|-------|---------|
| WSITE | 402 ft  |
| Area  | 6.96 ac |

### <u>Pond</u> <u>16-1</u> 0

|       | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | Cumulative        | <u>N</u>    | lotes |
|-------|----------------|-------------|----------------|-------------------|-------------|-------|
| GIS   | 65             | 24474       | 0.0            | 0.0               | Soil 15     |       |
| GIS   | 70             | 73000       | 243685.0       | 243685.0          |             |       |
| GIS   | 75             | 136000      | 522500.0       | 766185.0          |             |       |
|       |                |             | Cumulative F   | Ret (ac-ft) Below | w Freeboard |       |
| 17.59 |                |             |                |                   |             |       |
|       |                |             |                |                   |             |       |
|       |                |             |                | Pond Area         |             |       |

1.7

#### I-75 Pond Siting EPID- 452074-2-32-01

|                         |                                                        |         | FPID: 4                 | 52074 | -2-32-01                |        |                                      |          |                    |            |
|-------------------------|--------------------------------------------------------|---------|-------------------------|-------|-------------------------|--------|--------------------------------------|----------|--------------------|------------|
|                         |                                                        | Ρ       | ond Name:<br>Date:      |       |                         |        | Full                                 | Туріс    | al Section Wi      | dth        |
| PRE-DEVELOPMENT RU      | JNOFF PARAM                                            | NETER   | RS                      |       |                         |        |                                      |          |                    |            |
| Onsite Basin Area       | rea 88.39 ac                                           |         |                         |       |                         |        |                                      | asin Lim | iits               |            |
| Pond Parcel Area        | 9.80                                                   | 9.80 ac |                         |       |                         |        |                                      | to       | 1768+00            |            |
| Total Area              | 98.19                                                  | ас      |                         |       |                         |        |                                      |          |                    |            |
| CURVE NUMBER CALCUA     | TION:                                                  |         |                         |       |                         |        |                                      |          |                    |            |
| LAND USE                | TYPE A SOILS                                           |         | TYPE B SOIL             | 5     | TYPE C SOI              |        | TYPE D SO                            |          | CN*A               | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                                | CN      | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )              | CN       | 1647.19            | 16.81      |
| Impvervious             | 16.81                                                  | 98      |                         |       |                         |        |                                      |          | 2791.69            | 71.58      |
| Grass                   | 71.58                                                  | 39      |                         |       |                         |        |                                      |          | 382.20             | 9.80       |
| Pond Site Pre Condition | 9.80                                                   | 39      |                         |       |                         |        |                                      |          | 0.00               | 0.00       |
|                         |                                                        |         |                         |       |                         |        |                                      |          | 0.00               | 0.00       |
|                         |                                                        |         |                         |       |                         |        |                                      |          | 0.00               | 0.00       |
|                         |                                                        | -       |                         |       |                         |        |                                      |          | 0.00               | 0.00       |
|                         |                                                        |         |                         |       |                         |        |                                      |          | 0.00               | 0.00       |
| TOTALS                  | 98.19                                                  |         | 0                       |       | 0                       |        | 0                                    |          | 4821.09            | 98.19      |
|                         |                                                        |         | _                       |       |                         | _      | WEIGH                                | TED CN   |                    | 49         |
| Rainfall Depth for      | • 100yr-240hr (P) =<br>NOAA Atlas 14                   |         | in                      |       |                         | Poter  | ntial Abstraction<br>S = {1000/0     |          | 10.4               |            |
|                         | Runoff Depth (Q) =<br>- 0.2S) <sup>2</sup> /(P + 0.8S) |         | in                      |       |                         | Estima | t <b>ed Runoff Vo</b><br>Peak Volume |          | 71.40              | ac-ft      |
| POST-DEVELOPMENT        | RUNOFF PAR                                             | MET     | ERS                     |       |                         |        |                                      |          |                    |            |
| Onsite Basin Area       | 88.39                                                  | ac      |                         |       |                         |        | B                                    | asin Lin | nits               |            |
| Pond Parcel Area        | 9.80                                                   | ас      |                         |       |                         |        | 1684+80                              | to       | 1768+00            |            |
| Total Area              | 98.19                                                  | ac      |                         |       |                         |        |                                      |          |                    |            |
| CURVE NUMBER CALCUA     | ATION:                                                 |         |                         |       |                         |        |                                      |          |                    |            |
|                         | TYPE A SOILS                                           |         | TYPE B SOIL             | s     | TYPE C SOI              |        |                                      |          | CN*A               | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                                | CN      | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )              | CN       | F0F3 00            | 51.57      |
| Impervious              | 51.57                                                  | 98      |                         |       |                         | -      |                                      |          | 5053.88<br>1435.97 | 36.82      |
| Grass                   | 36.82                                                  | 39      |                         |       |                         |        |                                      |          | 1433.37            | 3.80       |
| Pond Site (Pervious)    | 3.80                                                   | 39      |                         |       |                         |        |                                      |          | 600.00             | 6.00       |
| Pond Site (Impervious)  | 6.00                                                   | 100     |                         |       |                         |        |                                      | +        |                    | 0.00       |

|                        | AREA (IT ) | un  | ARCA (IL ) | _ |   | and the second data and th |      |
|------------------------|------------|-----|------------|---|---|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Impervious             | 51.57      | 98  |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Grass                  | 36.82      | 39  |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Pond Site (Pervious)   | 3.80       | 39  |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
| Pond Site (Impervious) | 6.00       | 100 |            | - |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                        |            |     |            |   |   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |      |
|                        |            |     | 0          |   | 0 | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |      |
| TOTALS                 | 98.19      |     | 0          |   | U | WEIGHTE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D CN |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 13.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) =

3.6 S = (1000/CN) - 10

0.00

0.00

0.00

0.00 7238.05

ac-ft

0.00

0.00 0.00

0.00

98.19 74

Estimated Runoff Volume = 108.54 Peak Volume = A x Q

Pond Name: 16-1/17-3 Date: 5/23/2023

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |         | 88.39 ac                       |                        |  |  |  |  |  |
|-------------------------------------------------|---------|--------------------------------|------------------------|--|--|--|--|--|
| Weighted C                                      |         | 0.64                           |                        |  |  |  |  |  |
| Total Impervious                                | 0.95    | 51.57 ac                       |                        |  |  |  |  |  |
| Total Pervious                                  | 0.20    | 36.82 ac                       |                        |  |  |  |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |         | N                              |                        |  |  |  |  |  |
| Required Treatment (Runoff from 1" Rainfall)    |         | ן 4.70 ac-ft                   | (whichever is greater) |  |  |  |  |  |
| Required Treatment (1/2" over Area)             |         | 3.68 ac-ft (whichever is great |                        |  |  |  |  |  |
|                                                 |         | 4.70 ac-ft                     |                        |  |  |  |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):    |         |                                |                        |  |  |  |  |  |
| Existing Runoff Volume                          |         | 71.40 ac-ft                    |                        |  |  |  |  |  |
| Proposed Runoff Volume                          |         | 108.54 ac-ft                   |                        |  |  |  |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volume | 5       | 37.14 ac-ft                    |                        |  |  |  |  |  |
| Floodplain Compensation                         |         | 3.65 ac-ft                     |                        |  |  |  |  |  |
|                                                 | STORAGE | 40.79 ac-ft                    |                        |  |  |  |  |  |
| 3) Estimated Pond Configuration:                |         |                                |                        |  |  |  |  |  |
| Maintenance Berm Width                          | 20.0 ft | Freeboard                      | 1.0 ft                 |  |  |  |  |  |
| L/W Ratio                                       | 2.0     | Side Slopes                    | i (1:H) 4.0            |  |  |  |  |  |
| Maximum Treatment Volume Depth                  | 1.5 ft  | Wet/Dry                        | Dry                    |  |  |  |  |  |
| Maximum Pond Depth Below Freeboard              | 6.0 ft  | Assumed C                      | ontrol EL 47.00 ft     |  |  |  |  |  |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 817 ft  |
|---------------|---------|
| WTOP OF SLOPE | 409 ft  |
| Area          | 7.67 ac |

| LSITE | 1029 ft  |
|-------|----------|
| WSITE | 538 ft   |
| Area  | 12.72 ac |

# Pond 16-1/17-3 0

|                                        | <u>Contour</u> | <u>Area</u> | <b>Storage</b> | Cumulative | <u>Notes</u> |  |  |
|----------------------------------------|----------------|-------------|----------------|------------|--------------|--|--|
| GIS                                    | 60             | 196636      | 0.0            | 0.0        |              |  |  |
| GIS                                    | 65             | 334000      | 1326590.0      | 1326590.0  |              |  |  |
| GIS                                    | 69             | 425100      | 1518200.0      | 2844790.0  |              |  |  |
| Cumulative Ret (ac-ft) Below Freeboard |                |             |                |            |              |  |  |
| 65.31                                  |                |             |                |            |              |  |  |
|                                        |                |             |                |            |              |  |  |
|                                        | Pond Area      |             |                |            |              |  |  |

9.8

602527 13.83212

# I-75 Pond Siting

FPID: 452074-2-32-01

Pond Name: 16-2 Full **Typical Section Width** Date: 2/28/2024

# **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 31.45 ac |
|-------------------|----------|
| Pond Parcel Area  | 7.50 ac  |
| Total Area        | 38.95 ac |

| Basin Limits |    |         |  |  |  |
|--------------|----|---------|--|--|--|
| 1684+80      | to | 1722+00 |  |  |  |

### **CURVE NUMBER CALCUATION:**

|                         | TYPE A 50               | A SOILS TYPE B SOILS |                         | LS | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|----------------------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN                   | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UT A    | IOTAL AREA |
| Impvervious             | 7.52                    | 98                   |                         |    |                         |    |                         |        | 736.48  | 7.52       |
| Grass                   | 23.93                   | 39                   |                         |    |                         |    |                         |        | 933.46  | 23.93      |
| Pond Site Pre Condition | 8.01                    | 39                   |                         |    |                         |    |                         |        | 312.39  | 8.01       |
|                         |                         |                      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 39.46                   |                      | 0                       |    | 0                       |    | 0                       |        | 1982.33 | 39.46      |
|                         |                         |                      |                         | A  |                         |    | WEIGH                   | TED CN |         | 50         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### Runoff Depth (Q) = 9.0 in $Q = (P - 0.2S)^2 / (P + 0.8S)$

# **POST-DEVELOPMENT RUNOFF PARAMETERS**

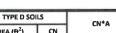
| Onsite Basin Area | 31.45 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 7.50 ft <sup>2</sup>  |
| Total Area        | 38.95 ft <sup>2</sup> |

| Potential Abstraction (S) = | 9.9 |
|-----------------------------|-----|
| S = (1000/CN) - 10          |     |

Estimated Runoff Volume = ac-ft 29.48 Peak Volume = A x Q

> **Basin Limits** 1684+80 1722+00 to

### **CURVE NUMBER CALCUATION:**


| LAND USE               | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CATA    | TOTALAREA  |
| Impervious             | 23.06                   | 98  |                         |    |                         |    |                         |        | 2259.67 | 23.06      |
| Grass                  | 8.39                    | 39  |                         |    |                         |    |                         |        | 327.29  | 8.39       |
| Pond Site (Pervious)   | 2.50                    | 39  |                         |    |                         |    |                         |        | 97.50   | 2.50       |
| Pond Site (Impervious) | 5.51                    | 100 |                         |    |                         |    |                         |        | 551.00  | 5.51       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 39.46                   |     | 0                       |    | 0                       |    | 0                       |        | 3235.46 | 39.46      |
|                        |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 82         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.5 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 2.2 S = (1000/CN) - 10

Estimated Runoff Volume = 47.76 ac-ft Peak Volume = A x Q



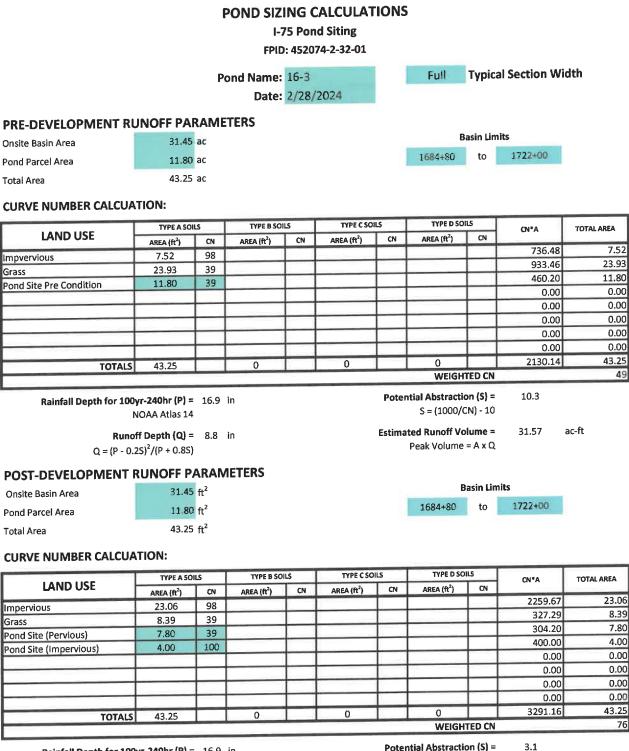
### Pond Name: 16-2 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |                | 31.45 ac<br>0.75                          |                      |
|-------------------------------------------------|----------------|-------------------------------------------|----------------------|
| Weighted C                                      | 0.95           | 23.06 ac                                  |                      |
| Total Impervious                                | 0.95           | 8.39 ac                                   |                      |
| Total Pervious                                  | 0.20           | N                                         |                      |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |                | ALM.                                      |                      |
| Required Treatment (Runoff from 1" Rainfall)    |                | 1.97 ac-ft (whiche                        | ever is greater)     |
| Required Treatment (1/2" over Area)             |                | 1.31 ac-ft                                |                      |
|                                                 |                | 1.97 ac-ft                                |                      |
| 2) Estimated Peak Attenuation Volume (EPAV):    |                |                                           |                      |
| Existing Runoff Volume                          |                | 29.48 ac-ft                               |                      |
| Proposed Runoff Volume                          |                | 47.76 ac-ft                               |                      |
| EPAV = Proposed Runoff - Existing Runoff Volume |                | 18.27 ac-ft                               |                      |
|                                                 |                |                                           |                      |
| Floodplain Compe                                | ensation       | 0.00 ac-ft                                |                      |
| TOTAL S                                         | TORAGE         | 18.27 ac-ft                               |                      |
| 3) Estimated Pond Configuration:                |                |                                           |                      |
| Maintenance Berm Width<br>L/W Ratio             | 20.0 ft<br>2.0 | Freeboard<br>Side Slopes (1:H)<br>Wet/Dry | 1.0 ft<br>4.0<br>Dry |
| Maximum Treatment Volume Depth                  | 1.5 ft         | Assumed Control El                        |                      |
| Maximum Pond Depth Below Freeboard              | 6.0 ft         | Assumed Control Et                        |                      |

# 4) Estimated Pond Dimensions Including Freeboard


| LTOP OF SLOPE | 558 ft  |
|---------------|---------|
| WTOP OF SLOPE | 279 ft  |
| Area          | 3.57 ac |

| LSITE | 717 ft  |
|-------|---------|
| WSITE | 383 ft  |
| Агеа  | 6.30 ac |

### Pond 16-2 0

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | Cumulative        | <u>Notes</u> |  |
|-----|----------------|-------------|----------------|-------------------|--------------|--|
| GIS | 72             | 22535       | 0.0            | 0.0               | Soil 15      |  |
| GIS | 78             | 78950       | 304455.0       | 304455.0          |              |  |
| GIS | 83             | 142550      | 553750.0       | 858205.0          |              |  |
|     |                |             | Cumulative F   | Ret (ac-ft) Below | Freeboard    |  |
|     |                |             |                | 19.70             |              |  |
|     |                |             |                |                   |              |  |

Pond Area 3.3



Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 13.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 3 S = (1000/CN) - 10

Estimated Runoff Volume = 49.16 ac-ft Peak Volume = A x Q

### Pond Name: 16-3 Date: 2/28/2024

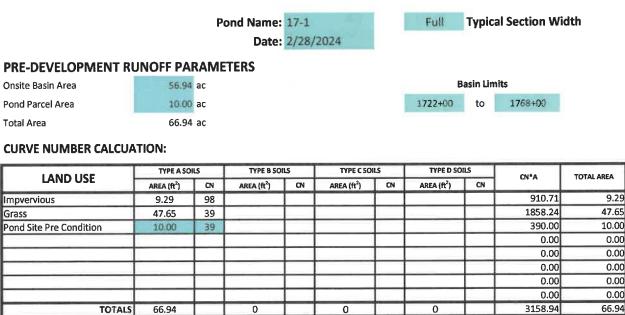
### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |           | 31.45 ac             |                  |
|------------------------------------------------|-----------|----------------------|------------------|
| Weighted C                                     |           | 0.75                 |                  |
| Total Impervious                               |           | 23.06 ac             |                  |
| Total Pervious                                 | 0.20      | 8.39 ac              |                  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |           | N                    |                  |
| Required Treatment (Runoff from 1" Rainfall)   |           | 1.97 ac-ft (which    | ever is greater) |
| Required Treatment (1/2" over Area)            |           | 1.31 ac-ft 🗍 (Willen | ever is greater) |
|                                                |           | 1.97 ac-ft           |                  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |           |                      |                  |
| Existing Runoff Volume                         |           | 31.57 ac-ft          |                  |
| Proposed Runoff Volume                         |           | 49.16 ac-ft          |                  |
| EPAV = Proposed Runoff - Existing Runoff Volum | e         | 17.59 ac-ft          |                  |
|                                                |           |                      |                  |
| Floodplain Com                                 | pensation | 0.00 ac-ft           |                  |
| TOTAL                                          | STORAGE   | 17.59 ac-ft          |                  |
| 3) Estimated Pond Configuration:               |           |                      |                  |
| Maintenance Berm Width                         | 20.0 ft   | Freeboard            | 1.0 ft           |
| L/W Ratio                                      | 2.0       | Side Slopes (1:H)    | 4.0              |
| Maximum Treatment Volume Depth                 | 1.5 ft    | Wet/Dry              | Dry              |
| Maximum Pond Depth Below Freeboard             | 5.0 ft    | Assumed Control El   | 100 C 100 C      |
| Maximum rond Depth Delow Heeboard              | 5.0 10    | Assumed control E    | Concerned in the |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 593 ft  |
|---------------|---------|
| WTOP OF SLOPE | 296 ft  |
| Area          | 4.04 ac |


| LSITE | 760 ft  |
|-------|---------|
| WSITE | 404 ft  |
| Area  | 7.04 ac |

|     | Pond    | <u>16-3</u> | 0              |                   |           |       |  |
|-----|---------|-------------|----------------|-------------------|-----------|-------|--|
|     | Contour | Area        | <u>Storage</u> | Cumulative        |           | Notes |  |
| GIS | 64      | 21421       | 0.0            | 0.0               |           |       |  |
| GIS | 68      | 94540       | 231922.0       | 231922.0          |           |       |  |
| GIS | 73      | 136350      | 577225.0       | 809147.0          |           |       |  |
|     |         |             | Cumulative I   | Ret (ac-ft) Below | Freeboard |       |  |
|     |         |             |                | 18.58             |           |       |  |
|     |         |             |                |                   |           |       |  |

Pond Area 3.1

# I-75 Pond Siting

FPID: 452074-2-32-01



Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 8.3 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

# **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 56.94 ac |
|-------------------|----------|
| Pond Parcel Area  | 10.00 ac |
| Total Area        | 66.94 ac |

| Potential Abstraction (S) = | 11.2 |
|-----------------------------|------|
| S = (1000/CN) - 10          |      |

WEIGHTED CN

Estimated Runoff Volume = 46.39 ac-ft Peak Volume = A x Q

47

**Basin Limits** 1722+00 1768+00 to

### **CURVE NUMBER CALCUATION:**

Grass

|                        | TYPE A SO               | ILS               | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-------------------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN                | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CNTA    | TOTALAREA  |
| Impervious             | 28.51                   | 98                |                         |    |                         |    |                         |        | 2794.21 | 28.51      |
| Grass                  | 28.43                   | 39                |                         |    |                         |    |                         |        | 1108.68 | 28.43      |
| Pond Site (Pervious)   | 4.00                    | 39                |                         |    |                         |    |                         |        | 156.00  | 4.00       |
| Pond Site (Impervious) | 6.00                    | 100               |                         |    |                         |    |                         |        | 600.00  | 6.00       |
|                        |                         |                   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |                   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |                   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |                   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 66.94                   |                   | 0                       |    | 0                       |    | 0                       |        | 4658.89 | 66.94      |
|                        |                         | the second second |                         |    |                         |    | WEIGH                   | TED CN |         | 70         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 12.6 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 4.4 S = (1000/CN) - 10

Estimated Runoff Volume = 70.25 ac-ft Peak Volume = A x Q

Pond Name: 17-1 Date: 2/28/2024

#### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W       |                          |      | 56.94 ac     |                         |
|-----------------------|--------------------------|------|--------------|-------------------------|
| Weighted C            |                          |      | 0.58         |                         |
| -                     | Total Impervious         | 0.95 | 28.51 ac     |                         |
|                       | Total Pervious           | 0.20 | 28.43 ac     |                         |
| Outstanding FL Water  | (Y/N)[multiply x 1.5]    |      | N            |                         |
| Required Treatment (I | Runoff from 1" Rainfall) |      | _ 2.73 ac-ft | (whichever is greater)  |
| Required Treatment (3 | 1/2" over Area)          |      | 2.37 ac-ft 🕤 | (Millenever is Breater) |
|                       |                          |      | 2.73 ac-ft   |                         |
|                       |                          |      |              |                         |

### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                     |              | 46.39 ac-ft |
|--------------------------------------------|--------------|-------------|
| Proposed Runoff Volume                     |              | 70.25 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff V | /olume       | 23.87 ac-ft |
| Floodplain Compensation                    |              | 3.65 ac-ft  |
|                                            | OTAL STORAGE | 27.52 ac-ft |
|                                            |              |             |

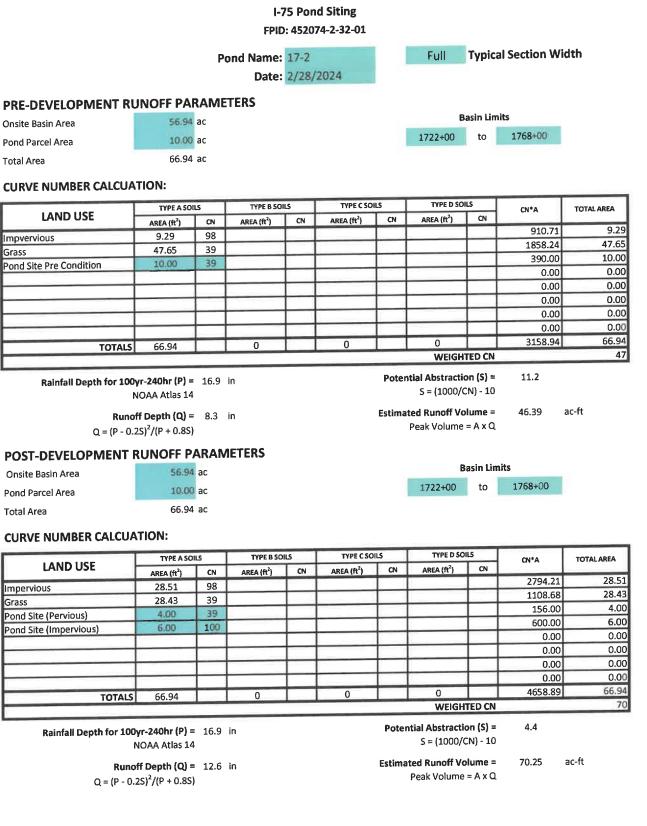
### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 7.0 ft  | Assumed Control EL | 49.00 ft |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 633 ft  |
|---------------|---------|
| WTOP OF SLOPE | 317 ft  |
| Area          | 4.60 ac |

| LSITE | 808 ft  |
|-------|---------|
| WSITE | 428 ft  |
| Area  | 7.94 ac |


### <u>Pond 17-1</u> 0

|     | <u>Contour</u> | <u>Area</u> | <b>Storage</b> | Cumulative | <u>Notes</u> |
|-----|----------------|-------------|----------------|------------|--------------|
| GIS | 49             | 211868      | 0.0            | 0.0        |              |
| GIS | 56             | 266205      | 1673255.5      | 1673255.5  |              |
|     |                |             |                |            |              |

### Cumulative Ret (ac-ft) Below Freeboard

38.41

Pond Area 6.1



Pond Name: 17-2 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|      | 56.94 ac     |                                                                         |
|------|--------------|-------------------------------------------------------------------------|
|      | 0.58         |                                                                         |
| 0.95 | 28.51 ac     |                                                                         |
| 0.20 | 28.43 ac     |                                                                         |
|      | N            |                                                                         |
|      | 2.73 ac-ft _ | (whichever is greater)                                                  |
|      | 2.37 ac-ft 了 | (willenewer is Breater)                                                 |
|      | 2.73 ac-ft   |                                                                         |
|      |              | 0.58<br>0.95 28.51 ac<br>0.20 28.43 ac<br>N<br>2.73 ac-ft<br>2.37 ac-ft |

### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                   |               | 46.39 ac-ft |
|------------------------------------------|---------------|-------------|
| Proposed Runoff Volume                   |               | 70.25 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff | Volume        | 23.87 ac-ft |
| Floodplain Compensation                  |               | 3.65 ac-ft  |
|                                          | TOTAL STORAGE | 27.52 ac-ft |
| ated David Configurations                |               |             |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 7.0 ft  | Assumed Control EL | 47.00 ft |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 633 ft  |
|---------------|---------|
| WTOP OF SLOPE | 317 ft  |
| Area          | 4.60 ac |

| LSITE | 808 ft  |
|-------|---------|
| WSITE | 428 ft  |
| Area  | 7.94 ac |

### <u>Pond</u> <u>17-2</u> 0

|     | <u>Contour</u> | Area   | <u>Storage</u> | <u>Cumulative</u> | Notes |
|-----|----------------|--------|----------------|-------------------|-------|
| GIS | 47             | 199247 | 0.0            | 0.0               |       |
| GIS | 54             | 250898 | 1575507.5      | 1575507.5         |       |

Cumulative Ret (ac-ft) Below Freeboard

36.17

Pond Area 5.8

# I-75 Pond Siting

FPID: 452074-2-32-01

| Pond Name:      | 17-3      | Full | Typical Section Width                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----------------|-----------|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Date:           | 2/28/2024 |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| NOFF PARAMETERS |           |      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                 |           |      | and a strategy of the state of |

# PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 56.94 ac |
|-------------------|----------|
| Pond Parcel Area  | 8.50 ac  |
| Total Area        | 65.44 ac |

| Basin Limits |    |         |  |  |  |
|--------------|----|---------|--|--|--|
| 1722+00      | to | 1768+00 |  |  |  |

### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UNA     | TOTALAREA  |
| Impvervious             | 9.29                    | 98  |                         |    |                         |    |                         |        | 910.71  | 9.29       |
| Grass                   | 47.65                   | 39  |                         |    |                         |    |                         |        | 1858.24 | 47.65      |
| Pond Site Pre Condition | 8,50                    | 39  |                         | 1  |                         |    |                         |        | 331.50  | 8.50       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     | ·                       |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 65.44                   |     | 0                       |    | 0                       |    | 0                       |        | 3100.44 | 65.44      |
| 10                      |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 47         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 8.4 in Q =  $(P - 0.2S)^2/(P + 0.8S)$

#### Potential Abstraction (S) = S = (1000/CN) - 10

Estimated Runoff Volume = 45.57 ac-ft Peak Volume = A x Q

11.1

### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 56.94 ac |  |
|-------------------|----------|--|
| Pond Parcel Area  | 8.50 ac  |  |
| Total Area        | 65.44 ac |  |

| Basin Limits |    |         |  |  |  |  |
|--------------|----|---------|--|--|--|--|
| 1722+00      | to | 1768+00 |  |  |  |  |

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         | TOTALANLA  |
| Impervious             | 28.51                   | 98  |                         |    |                         |    |                         |        | 2794.21 | 28.51      |
| Grass                  | 28.43                   | 39  |                         |    |                         |    |                         |        | 1108.68 | 28.43      |
| Pond Site (Pervious)   | 2.50                    | 39  |                         |    |                         |    |                         |        | 97.50   | 2.50       |
| Pond Site (Impervious) | 6.00                    | 100 |                         |    |                         |    |                         |        | 600.00  | 6.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 65.44                   |     | 0                       |    | 0                       |    | 0                       |        | 4600.39 | 65.44      |
|                        |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 70         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 12.7 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 4.2 S = (1000/CN) - 10

Estimated Runoff Volume = 69.31 ac-ft Peak Volume = A x Q

Pond Name: 17-3 Date: 2/28/2024

### POND SIZING ESTIMATION

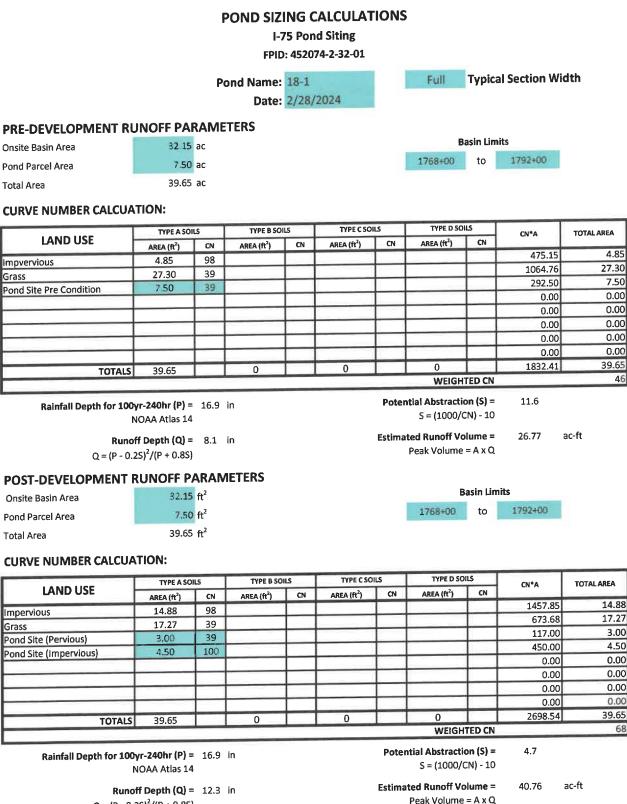
# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |         | 56.94 ac              |                |
|-------------------------------------------------|---------|-----------------------|----------------|
| Weighted C                                      |         | 0.58                  |                |
| Total Impervious                                | 0.95    | 28.51 ac              |                |
| Total Pervious                                  |         | 28.43 ac              |                |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |         | N                     |                |
| Required Treatment (Runoff from 1" Rainfall)    |         | 2.73 ac-ft ] (which a | er is greater) |
| Required Treatment (1/2" over Area)             |         | 2.37 ac-ft            | er is greater) |
| Required freatment (1) 2 of a rates,            |         | 2.73 ac-ft            |                |
|                                                 |         |                       |                |
| 2) Estimated Peak Attenuation Volume (EPAV):    |         |                       |                |
| Existing Runoff Volume                          |         | 45.57 ac-ft           |                |
| Proposed Runoff Volume                          |         | 69.31 ac-ft           |                |
| EPAV = Proposed Runoff - Existing Runoff Volume | e       | 23.75 ac-ft           |                |
|                                                 |         |                       |                |
| Floodplain Compensation                         |         | 3.65 ac-ft            |                |
|                                                 |         |                       |                |
| TOTAL                                           | STORAGE | 27.40 ac-ft           |                |
| 3) Estimated Pond Configuration:                |         |                       |                |
| Maintenance Berm Width                          | 20.0 ft | Freeboard             | 1.0 ft         |
| L/W Ratio                                       | 2.0     | Side Slopes (1:H)     | 4.0            |
| Maximum Treatment Volume Depth                  | 1.5 ft  | Wet/Dry               | Dry            |
| Maximum Pond Depth Below Freeboard              | 6.0 ft  | Assumed Control EL    | 47.00 ft       |
|                                                 |         |                       |                |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 676 ft  |
|---------------|---------|
| WTOP OF SLOPE | 338 ft  |
| Area          | 5.24 ac |

| LSITE | 859 ft  |
|-------|---------|
| WSITE | 453 ft  |
| Area  | 8.94 ac |


### Pond 17-3 0

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | Cumulative | Notes |
|-----|----------------|-------------|----------------|------------|-------|
| GIS | 47             | 196636      | 0.0            | 0.0        |       |
| GIS | 54             | 248856      | 1559222.0      | 1559222.0  |       |

### Cumulative Ret (ac-ft) Below Freeboard

35.79

Pond Area 5.7



46

68

 $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

Grass

Grass

### Pond Name: 18-1 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                              |      | 32.15 ac            |                        |
|----------------------------------------------|------|---------------------|------------------------|
| Weighted C                                   |      | 0.55                |                        |
| Total Impervious                             | 0.95 | 14.88 ac            |                        |
| Total Pervious                               | 0.20 | 17.27 ac            |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]   |      | N                   |                        |
| Required Treatment (Runoff from 1" Rainfall) |      | <b>1.47 ac-ft</b> _ | (whichever is greater) |
| Required Treatment (1/2" over Area)          |      | 1.34 ac-ft 了        | (whichever is greater) |
|                                              |      | 1.47 ac-ft          |                        |

#### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 26.77 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 40.76 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 13.99 ac-ft |
| Floodplain Compensation                         | 2.97 ac-ft  |
| TOTAL STORAGE                                   | 18.42 ac-ft |

### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 5.0 ft  | Assumed Control EL | 50.00 ft |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 606 ft  |
|---------------|---------|
| WTOP OF SLOPE | 303 ft  |
| Area          | 4.22 ac |

| LSITE | 775 ft  |
|-------|---------|
| WSITE | 412 ft  |
| Area  | 7.33 ac |

# Pond 18-1 0

|     | Contour | Area   | <u>Storage</u> | Cumulative | Notes |
|-----|---------|--------|----------------|------------|-------|
| GIS | 50      | 161710 | 0.0            | 0.0        |       |
| GIS | 55      | 198174 | 899710.0       | 899710.0   |       |

Cumulative Ret (ac-ft) Below Freeboard

20.65

Pond Area 4.5

# I-75 Pond Siting

FPID: 452074-2-32-01

| Pond Name: | 18-2      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 32.15 ac |
|-------------------|----------|
| Pond Parcel Area  | 7.50 ac  |
| Total Area        | 39.65 ac |

| Basin Limits |    |         |  |  |  |  |
|--------------|----|---------|--|--|--|--|
| 1768+00      | to | 1792+00 |  |  |  |  |

### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE B SOILS TYPE C SOILS |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|---------------------------|----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> )   | CN | AREA (ft <sup>2</sup> ) | CN     | UN"A    | IUTAL AREA |
| Impvervious             | 4.85                    | 98  |                         |    |                           |    |                         |        | 475.15  | 4.85       |
| Grass                   | 27.30                   | 39  |                         |    |                           |    |                         |        | 1064.76 | 27.30      |
| Pond Site Pre Condition | 7.50                    | 39  |                         |    |                           |    |                         |        | 292.50  | 7.50       |
|                         |                         |     |                         |    |                           |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    | [                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                           |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                           |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                           |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 39.65                   |     | 0                       |    | 0                         |    | 0                       |        | 1832.41 | 39.65      |
|                         |                         |     |                         |    |                           |    | WEIGH                   | TED CN |         | 46         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 8.1 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

# Potential Abstraction (\$) = 11.6 S = (1000/CN) - 10

Estimated Runoff Volume = 26.77 ac-ft Peak Volume = A x Q

### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 32.15 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 7.50 ft <sup>2</sup>  |
| Total Area        | 39.65 ft <sup>2</sup> |

| В       | asin Lin | nits    |
|---------|----------|---------|
| 1768+00 | to       | 1792+00 |

### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UN*A    | TOTALAREA  |
| Impervious             | 14.88                   | 98  |                         |    |                         |    |                         |        | 1457.85 | 14.88      |
| Grass                  | 17.27                   | 39  |                         |    |                         |    |                         |        | 673.68  | 17.27      |
| Pond Site (Pervious)   | 3.00                    | 39  |                         |    |                         |    |                         |        | 117.00  | 3.00       |
| Pond Site (Impervious) | 4.50                    | 100 |                         |    | i                       |    |                         |        | 450.00  | 4.50       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         | 1  |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 39.65                   |     | 0                       |    | 0                       |    | 0                       |        | 2698.54 | 39.65      |
|                        |                         |     |                         | -  |                         |    | WEIGH                   | TED CN |         | 68         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 12.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 4.7 S = (1000/CN) - 10

Estimated Runoff Volume = 40.76 ac-ft Peak Volume = A x Q

### Pond Name: 18-2 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5] | 0.95<br>0.20                       | 32.15 ac<br>0.55<br>14.88 ac<br>17.27 ac<br>N                   |                                  |
|-------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------|----------------------------------|
| Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area)                               |                                    | 1.47 ac-ft<br>1.34 ac-ft<br><b>1.47 ac-ft</b>                   | ver is greater)                  |
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                      |                                    |                                                                 |                                  |
| Existing Runoff Volume<br>Proposed Runoff Volume                                                                  |                                    | 26.77 ac-ft<br>40.76 ac-ft                                      |                                  |
| EPAV = Proposed Runoff - Existing Runoff Volume<br>Floodplain Comp                                                |                                    | 13.99 ac-ft<br>2.97 ac-ft                                       |                                  |
|                                                                                                                   | STORAGE                            | 18.42 ac-ft                                                     |                                  |
| 3) Estimated Pond Configuration:                                                                                  |                                    |                                                                 |                                  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard       | 20.0 ft<br>2.0<br>1.5 ft<br>5.0 ft | Freeboard<br>Side Slopes (1:H)<br>Wet/Dry<br>Assumed Control EL | 1.0 ft<br>4.0<br>Dry<br>49.00 ft |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 606 ft  |
|---------------|---------|
| WTOP OF SLOPE | 303 ft  |
| Area          | 4.22 ac |

| LSITE | 775 ft  |
|-------|---------|
| WSITE | 412 ft  |
| Area  | 7.33 ac |

#### <u>18-2</u> 0 Pond <u>Contour</u> <u>Area</u> <u>Storage</u> Cumulative <u>Notes</u> GIS 49 170736 0.0 0.0 Soil 15 54 939280.0 GIS 204976 939280.0 Cumulative Ret (ac-ft) Below Freeboard 21.56

Pond Area 4.7

# I-75 Pond Siting

|                                                         |                                                                |                      | FPID                                 | : 45207         | 74-2-32-01                            |          |                               |           |                                                                               |                                                                                             |
|---------------------------------------------------------|----------------------------------------------------------------|----------------------|--------------------------------------|-----------------|---------------------------------------|----------|-------------------------------|-----------|-------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                                                         |                                                                | Pe                   | ond Name:                            | 18-3            |                                       |          | Full                          | Туріса    | al Section Wi                                                                 | dth                                                                                         |
|                                                         |                                                                |                      | Date:                                | 2/28/           | 2024                                  |          |                               |           |                                                                               |                                                                                             |
| PRE-DEVELOPMENT RUI                                     |                                                                | RAME                 | TERS                                 |                 |                                       |          |                               |           |                                                                               |                                                                                             |
| Onsite Basin Area                                       | 32.15                                                          |                      |                                      |                 |                                       |          | E                             | Basin Lim | its                                                                           |                                                                                             |
| Pond Parcel Area                                        | 7.50                                                           | 1.000                |                                      |                 |                                       |          | 1768+00                       | to        | 1792+00                                                                       |                                                                                             |
|                                                         | 39.65                                                          |                      |                                      |                 |                                       |          |                               |           |                                                                               |                                                                                             |
| Total Area                                              | 39.05                                                          | ac                   |                                      |                 |                                       |          |                               |           |                                                                               |                                                                                             |
| CURVE NUMBER CALCUAT                                    | ION:                                                           |                      |                                      |                 |                                       |          |                               |           |                                                                               |                                                                                             |
| LAND USE                                                | TYPE A SOI                                                     | LS                   | TYPE B SOI                           |                 | TYPE C SOIL                           |          | TYPE D SC                     |           | CN*A                                                                          | TOTAL AREA                                                                                  |
| LAND USE                                                | AREA (ft <sup>2</sup> )                                        | CN                   | AREA (ft <sup>2</sup> )              | CN              | AREA (ft <sup>2</sup> )               | CN       | AREA (ft²)                    | CN        | 475.15                                                                        | 4.85                                                                                        |
| Impvervious                                             | 4.85                                                           | 98                   |                                      |                 |                                       |          |                               | ++        | 1064.76                                                                       | 27.30                                                                                       |
| Grass                                                   | 27.30                                                          | 39                   |                                      | $ \rightarrow $ |                                       |          |                               | +         | 292.50                                                                        | 7.50                                                                                        |
| Pond Site Pre Condition                                 | 7.50                                                           | 39                   |                                      |                 |                                       | -        |                               | + +       | 0.00                                                                          | 0.00                                                                                        |
|                                                         |                                                                |                      |                                      |                 |                                       |          |                               |           | 0.00                                                                          | 0.00                                                                                        |
|                                                         |                                                                |                      |                                      |                 |                                       | -        |                               |           | 0.00                                                                          | 0.00                                                                                        |
|                                                         |                                                                |                      |                                      |                 |                                       |          |                               |           | 0.00                                                                          | 0.00                                                                                        |
|                                                         |                                                                |                      |                                      |                 |                                       |          |                               |           | 0.00                                                                          | 0.00                                                                                        |
| TOTALS                                                  | 39.65                                                          |                      | 0                                    |                 | 0                                     |          | 0                             |           | 1832.41                                                                       | 39.65                                                                                       |
|                                                         |                                                                | ARAM                 |                                      |                 |                                       | Estima   | ited Runoff Vo<br>Peak Volume |           |                                                                               | ac-ft                                                                                       |
| Onsite Basin Area                                       | 32.15                                                          | 1.0                  |                                      |                 |                                       |          | -                             |           | 1000                                                                          |                                                                                             |
| Pond Parcel Area                                        | 7.50                                                           | ft <sup>2</sup>      |                                      |                 |                                       |          | 1768+00                       | to        | 1792+00                                                                       |                                                                                             |
| Total Area                                              | 39.65                                                          | ft <sup>2</sup>      |                                      |                 |                                       |          |                               |           |                                                                               |                                                                                             |
|                                                         |                                                                |                      |                                      |                 |                                       |          |                               |           | (Shadhal)                                                                     |                                                                                             |
| CURVE NUMBER CALCUAT                                    |                                                                |                      |                                      |                 |                                       |          | 7705 0 50                     |           |                                                                               |                                                                                             |
| CURVE NUMBER CALCUAT                                    | TYPE A SO                                                      | -                    | TYPE B SO                            |                 | TYPE C SOI                            | -        | TYPE D SC                     | DILS CN   | CN*A                                                                          | TOTAL AREA                                                                                  |
| LAND USE                                                | TYPE A SO<br>AREA (ft <sup>2</sup> )                           | CN                   | TYPE B SO<br>AREA (ft <sup>2</sup> ) | ILS<br>CN       | TYPE C SOI<br>AREA (ft <sup>2</sup> ) | LS<br>CN | TYPE D SC<br>AREA (ft²)       |           |                                                                               |                                                                                             |
| LAND USE                                                | type a so<br>area (ft²)<br>14.88                               | CN<br>98             |                                      |                 |                                       | -        |                               |           | CN*A                                                                          | 14.88                                                                                       |
| LAND USE                                                | TYPE A SO<br>AREA (ft <sup>2</sup> )<br>14.88<br>17.27         | CN<br>98<br>39       |                                      |                 |                                       | -        |                               |           | cn*a<br>1457.85                                                               | 14.88<br>17.27<br>3.00                                                                      |
| LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | TYPE A SO<br>AREA (ft <sup>2</sup> )<br>14.88<br>17.27<br>3.00 | CN<br>98<br>39<br>39 |                                      |                 |                                       | -        |                               |           | cn*a<br>1457.85<br>673.68                                                     | 14.88<br>17.27<br>3.00<br>4.50                                                              |
| LAND USE                                                | TYPE A SO<br>AREA (ft <sup>2</sup> )<br>14.88<br>17.27         | CN<br>98<br>39       |                                      |                 |                                       | -        |                               |           | CN*A<br>1457.85<br>673.68<br>117.00<br>450.00<br>0.00                         | 14.88<br>17.2<br>3.00<br>4.50<br>0.00                                                       |
| LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | TYPE A SO<br>AREA (ft <sup>2</sup> )<br>14.88<br>17.27<br>3.00 | CN<br>98<br>39<br>39 |                                      |                 |                                       | -        |                               |           | CN*A<br>1457.85<br>673.68<br>117.00<br>450.00<br>0.00<br>0.00                 | 14.88<br>17.2<br>3.00<br>4.50<br>0.00<br>0.00                                               |
| LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | TYPE A SO<br>AREA (ft <sup>2</sup> )<br>14.88<br>17.27<br>3.00 | CN<br>98<br>39<br>39 |                                      |                 |                                       | -        |                               |           | CN*A<br>1457.85<br>673.68<br>117.00<br>450.00<br>0.00<br>0.00<br>0.00         | 14.88<br>17.27<br>3.00<br>4.50<br>0.00<br>0.00<br>0.00                                      |
| LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | TYPE A SO<br>AREA (ft <sup>2</sup> )<br>14.88<br>17.27<br>3.00 | СN<br>98<br>39<br>39 |                                      |                 | AREA (ft <sup>2</sup> )               | -        | AREA (ft²)                    |           | CN*A<br>1457.85<br>673.68<br>117.00<br>450.00<br>0.00<br>0.00<br>0.00<br>0.00 | 14.88<br>17.27<br>3.00<br>4.50<br>0.00<br>0.00<br>0.00<br>0.00                              |
| LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | TYPE A SO<br>AREA (ft <sup>2</sup> )<br>14.88<br>17.27<br>3.00 | СN<br>98<br>39<br>39 |                                      |                 |                                       | -        | AREA (ft²)                    |           | CN*A<br>1457.85<br>673.68<br>117.00<br>450.00<br>0.00<br>0.00<br>0.00         | TOTAL AREA<br>14.88<br>17.27<br>3.00<br>4.50<br>0.00<br>0.00<br>0.00<br>0.00<br>39.65<br>68 |

Runoff Depth (Q) = 12.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

40.76 ac-ft Estimated Runoff Volume = Peak Volume = A x Q

### Pond Name: 18-3 Date: 2/28/2024

#### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |           | 32.15 ac                          |                   |  |  |  |
|------------------------------------------------|-----------|-----------------------------------|-------------------|--|--|--|
| Weighted C                                     |           | 0.55                              |                   |  |  |  |
| Total Impervious                               | 0.95      | 14.88 ac                          |                   |  |  |  |
| Total Pervious                                 | 0.20      | 17.27 ac                          |                   |  |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |           | N                                 |                   |  |  |  |
| Required Treatment (Runoff from 1" Rainfall)   |           | 1.47 ac-ft (whichever is greater) |                   |  |  |  |
| Required Treatment (1/2" over Area)            |           | 1.34 ac-ft                        | level is greatery |  |  |  |
|                                                |           | 1.47 ac-ft                        |                   |  |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |           |                                   |                   |  |  |  |
| Existing Runoff Volume                         |           | 26.77 ac-ft                       |                   |  |  |  |
| Proposed Runoff Volume                         |           | 40.76 ac-ft                       |                   |  |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volum | e         | 13.99 ac-ft                       |                   |  |  |  |
| Floodplain Com                                 | pensation | 2.97 ac-ft                        |                   |  |  |  |
| TOTAL                                          | STORAGE   | 18.42 ac-ft                       |                   |  |  |  |
| 3) Estimated Pond Configuration:               |           |                                   |                   |  |  |  |
| Maintenance Berm Width                         | 20.0 ft   | Freeboard                         | 1.0 ft            |  |  |  |
| L/W Ratio                                      | 2.0       | Side Slopes (1:H)                 | 4.0               |  |  |  |
| Maximum Treatment Volume Depth                 | 1.5 ft    | Wet/Dry                           | Dry               |  |  |  |
| Maximum Pond Depth Below Freeboard             | 5.0 ft    | Assumed Control E                 | L 51.00 ft        |  |  |  |
|                                                |           |                                   |                   |  |  |  |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 606 ft  |
|---------------|---------|
| WTOP OF SLOPE | 303 ft  |
| Area          | 4.22 ac |

| LSITE | 775 ft  |
|-------|---------|
| WSITE | 412 ft  |
| Area  | 7.33 ac |

|            | Pond                       | <u>18-3</u>                     | 0                                 |                                      |                         |
|------------|----------------------------|---------------------------------|-----------------------------------|--------------------------------------|-------------------------|
| GIS<br>GIS | <u>Contour</u><br>51<br>56 | <u>Area</u><br>158496<br>194083 | <u>Storage</u><br>0.0<br>881447.5 | <u>Cumulative</u><br>0.0<br>881447.5 | <u>Notes</u><br>Soil 15 |

### Cumulative Ret (ac-ft) Below Freeboard

20.24

Pond Area 4.5

602527 13.83212

|                         |                                                        |      |                         |          | d Siting<br>74-2-32-01  |        |                                |           |               |            |
|-------------------------|--------------------------------------------------------|------|-------------------------|----------|-------------------------|--------|--------------------------------|-----------|---------------|------------|
|                         |                                                        | P    | ond Name:               | 18-4     |                         |        | Half                           | Typica    | al Section Wi | idth       |
|                         |                                                        |      | Date:                   | 2/28/    | 2024                    |        |                                |           |               |            |
| PRE-DEVELOPMENT RU      |                                                        |      | TERS                    |          |                         |        |                                |           |               |            |
| Onsite Basin Area       | 8.32                                                   |      | ILING                   |          |                         |        | В                              | asin Lim  | iits          |            |
| Pond Parcel Area        |                                                        | ас   |                         |          |                         |        | 1768+00                        | to        | 1792÷00       |            |
| Total Area              | 8.32                                                   |      |                         |          |                         |        |                                |           |               |            |
| CURVE NUMBER CALCUA     | TION:                                                  |      |                         |          |                         |        |                                |           |               |            |
|                         | TYPE A SOI                                             | LS   | TYPE B SOI              | LS       | TYPE C SOI              | LS     | TYPE D SO                      | ILS       |               |            |
| LAND USE                | AREA (ft <sup>2</sup> )                                | CN   | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )        | CN        | CN*A          | TOTAL AREA |
| Impvervious             | 2.42                                                   | 98   |                         |          |                         |        |                                |           | 237.58        | 2.42       |
| Grass                   | 5.90                                                   | 39   |                         |          |                         |        |                                |           | 229.93        | 5.90       |
| Pond Site Pre Condition | 0.00                                                   | 39   |                         |          |                         |        |                                |           | 0.00          | 0.00       |
|                         |                                                        |      |                         |          |                         |        |                                |           | 0.00          | 0.00       |
|                         |                                                        |      |                         | <u> </u> |                         |        |                                |           | 0.00          | 0.00       |
|                         |                                                        |      |                         | <u> </u> |                         |        |                                |           | 0.00          | 0.00       |
|                         |                                                        |      |                         |          |                         |        |                                |           | 0.00          | 0.00       |
| TOTALS                  | 8.32                                                   |      | 0                       |          | 0                       |        | 0                              |           | 467.51        | 8.32       |
| TOTALS                  | 0.52                                                   |      | 0                       |          | 0                       |        | WEIGH                          | TED CN    | 407.51        | 56         |
| Rainfall Depth for 100  | <b>yr-240hr (P) =</b><br>NOAA Atlas 14                 |      | in                      |          |                         | Poter  | ntial Abstracti<br>S = (1000/0 |           | 7.8           |            |
|                         | <b>off Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S) |      | in                      |          |                         | Estima | ted Runoff Vo<br>Peak Volume   |           | 7.05          | ac-ft      |
| POST-DEVELOPMENT        | RUNOFF P                                               | ARAN | IETERS                  |          |                         |        |                                |           |               |            |
| Onsite Basin Area       | 8.32                                                   | ft²  |                         |          |                         |        | B                              | lasin Lim | nits          |            |
| Pond Parcel Area        | 0.00                                                   | ft²  |                         |          |                         |        | 1768+00                        | to        | 1792+00       |            |
| Total Area              | 8.32                                                   | ft²  |                         |          |                         |        |                                |           |               |            |
| CURVE NUMBER CALCUA     | TION:                                                  |      |                         |          |                         |        |                                |           |               |            |
|                         | TYPE A SO                                              | LS   | TYPE B SOI              | LS       | TYPE C SO               | LS     | TYPE D SO                      | ILS       | <b>Ch1</b> *4 | -          |
| LAND USE                | AREA (ft <sup>2</sup> )                                | CN   | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )        | CN        | CN*A          | TOTAL AREA |
| - 7.50                  | 7.44                                                   | 00   |                         | 1        |                         |        | T                              | T T       | 700.00        | 7.44       |

|                        | ITPE A SU               |     | ITPE B SUILS            |    | TTPE B SOILS TTPE C SOILS |    | TITE 0 SOLS             |        | - CN*A | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|---------------------------|----|-------------------------|--------|--------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> )   | CN | AREA (ft <sup>2</sup> ) | CN     | CNTA   | TOTAL AREA |
| Impervious             | 7.44                    | 98  |                         |    |                           |    |                         |        | 728.93 | 7.44       |
| Grass                  | 0.88                    | 39  |                         |    |                           |    |                         |        | 34.40  | 0.88       |
| Pond Site (Pervious)   | 0.00                    | 39  |                         |    |                           |    |                         |        | 0.00   | 0.00       |
| Pond Site (Impervious) | 0.00                    | 100 |                         |    |                           |    |                         |        | 0.00   | 0.00       |
|                        |                         |     |                         |    |                           |    |                         |        | 0.00   | 0.00       |
|                        |                         |     |                         |    |                           |    |                         |        | 0.00   | 0.00       |
|                        |                         |     |                         |    |                           |    |                         |        | 0.00   | 0.00       |
|                        |                         |     |                         | 1  | [                         |    |                         |        | 0.00   | 0.00       |
| TOTALS                 | 8.32                    |     | 0                       | 1  | 0                         |    | 0                       |        | 763.32 | 8.32       |
|                        |                         |     |                         |    |                           |    | WEIGH                   | TED CN |        | 92         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.9 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 0.9 S = (1000/CN) - 10

Estimated Runoff Volume = 11.00 ac-ft Peak Volume = A x Q

# Pond Name: 18-4 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                                        |         | 8.32 ac         |                       |
|------------------------------------------------------------------------|---------|-----------------|-----------------------|
| Weighted C                                                             |         | 0.87            |                       |
| Total Impervious                                                       | 0.95    | 7.44 ac         |                       |
| Total Pervious                                                         | 0.20    | 0.88 ac         |                       |
| Outstanding FL Water (Y/N)[multiply x 1.5]                             |         | N               |                       |
| Required Treatment (Runoff from 1" Rainfall)                           |         | 0.60 ac-ft ] (w | vhichever is greater) |
| Required Treatment (1/2" over Area)                                    |         | 0.35 ac-ft 🥤 💔  | Anenever is greatery  |
|                                                                        |         | 0.60 ac-ft      |                       |
| 2) Estimated Peak Attenuation Volume (EPAV):<br>Existing Runoff Volume |         | 7.05 ac-ft      |                       |
| Proposed Runoff Volume                                                 |         | 11.00 ac-ft     |                       |
| EPAV = Proposed Runoff - Existing Runoff Volume                        |         | 3.95 ac-ft      |                       |
| Floodplain Comp                                                        |         | 2.97 ac-ft      |                       |
| TOTAL                                                                  | STORAGE | 6.92 ac-ft      |                       |
| 3) Estimated Pond Configuration:                                       |         |                 |                       |
| Maintenance Berm Width                                                 | 20.0 ft | Freeboard       | 1.0 ft                |
| L/W Ratio                                                              | 2.0     | Side Slopes (1  | :H) 4.0               |
| Maximum Treatment Volume Depth                                         | 1.5 ft  | Wet/Dry         | Dry                   |
| Maximum Pond Depth Below Freeboard                                     | 5.0 ft  | Assumed Con     | trol EL 51.00 ft      |
|                                                                        |         |                 |                       |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 382 ft  |
|---------------|---------|
| WTOP OF SLOPE | 191 ft  |
| Area          | 1.68 ac |

| LSITE | 507 ft  |
|-------|---------|
| WSITE | 277 ft  |
| Area  | 3.23 ac |

### Pond 18-4 0

|     | <u>Contour</u> | <u>Area</u> | Storage [Variable] | <u>Cumulative</u> | <u>Notes</u> |       |          |   |
|-----|----------------|-------------|--------------------|-------------------|--------------|-------|----------|---|
| SIS | 48             | 229501      | 0.0                | 0.0               |              |       |          |   |
| GIS | 49             | 254584      | 242042.5           | 242042.5          |              |       |          |   |
| GIS | 50             | 276591      | 265587.5           | 507630.0          |              |       |          |   |
| GIS | 51             | 302455      | 289523.0           | 797153.0          |              |       |          |   |
| GIS | 52             | 335655      | 319055.0           | 1116208.0         |              |       |          |   |
| GIS | 53             | 365881      | 350768.0           | 1466976.0         |              |       |          |   |
| GIS | 54             | 417214      | 391547.5           | 1858523.5         |              |       |          |   |
| GIS | 55             | 459731      | 438472.5           | 2296996.0         |              | 56.16 |          |   |
| GIS | 56             | 1208075     | 833903.0           | 3130899.0         |              | 56    | 71.87555 |   |
| GIS | 57             | 2441396     | 1824735.5          | 4955634.5         |              | 57    | 113.7657 | 4 |
| GIS | 58             | 335655      | 1388525.5          | 6344160.0         | х            |       | 78.81    |   |
| GIS | 59             | 365881      | 350768.0           | 6694928.0         |              |       |          |   |

### Cumulative Ret (ac-ft) Below Freeboard

| Pond Area |          |
|-----------|----------|
| 27.7      | 602527   |
| 56.0      | 13.83212 |

# I-75 Pond Siting

### FPID: 452074-2-32-01

|                         |                                                                                                |                 | FPIL                    | ): 4520       | /4-2-32-01              |      |                                                                |                          |               |            |
|-------------------------|------------------------------------------------------------------------------------------------|-----------------|-------------------------|---------------|-------------------------|------|----------------------------------------------------------------|--------------------------|---------------|------------|
|                         |                                                                                                | Р               | ond Name:<br>Date:      | 18-4<br>2/28/ | 2024                    |      | Half                                                           | Typica                   | l Section Wi  | idth       |
| PRE-DEVELOPMENT RU      | INOFF PA                                                                                       | RAME            | TERS                    |               |                         |      |                                                                |                          |               |            |
| Onsite Basin Area       | 23.83                                                                                          | ас              |                         |               |                         |      | E                                                              | lasin Limi               | its           |            |
| Pond Parcel Area        |                                                                                                | ас              |                         |               |                         |      | 1768+00                                                        | to                       | 1792+00       |            |
| Total Area              | 23.83                                                                                          | ас              |                         |               |                         |      |                                                                |                          |               |            |
| CURVE NUMBER CALCUA     | TION:                                                                                          |                 |                         |               |                         |      |                                                                |                          |               |            |
|                         | TYPE A SO                                                                                      | ILS             | TYPE B SO               | DILS          | TYPE C SO               | ILS  | TYPE D SO                                                      | ILS                      | CN*A          | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                                                                        | CN              | AREA (ft <sup>2</sup> ) | CN            | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> )                                        | CN                       |               |            |
| Impvervious             | 2.42                                                                                           | 98              |                         |               |                         |      |                                                                |                          | 237.58        | 2.42       |
| Grass                   | 21.41                                                                                          | 39              |                         |               |                         |      |                                                                | $ \downarrow \downarrow$ | 834.82        | 21.41      |
| Pond Site Pre Condition | 0.00                                                                                           | 39              |                         |               |                         |      |                                                                | $ \rightarrow $          | 0.00          | 0.00       |
|                         |                                                                                                |                 |                         |               |                         | -    |                                                                |                          | 0.00          | 0.00       |
|                         |                                                                                                |                 |                         | -             |                         | -    |                                                                | +                        | 0.00          | 0.00       |
|                         |                                                                                                | -               |                         |               |                         | +    |                                                                | +                        | 0.00          | 0.00       |
|                         |                                                                                                | -               |                         | +             |                         |      |                                                                | +                        | 0.00          | 0.00       |
|                         | 23,83                                                                                          | -               | 0                       |               | 0                       | -    | 0                                                              |                          | 1072.40       |            |
| TOTALS                  | 23.83                                                                                          |                 |                         |               | 0                       |      |                                                                | TED CN                   |               | 45         |
| Runo                    | <b>yr-240hr (P) =</b><br>IOAA Atlas 14<br><b>ff Depth (Q) =</b><br>25) <sup>2</sup> /(P + 0.85 | 7.8             |                         |               |                         |      | ntial Abstracti<br>S = (1000/<br>Ited Runoff Vo<br>Peak Volume | CN) - 10<br>olume =      | 12.2<br>15.56 | ac-ft      |
| POST-DEVELOPMENT        | RUNOFF P                                                                                       | ARAN            | <b>IETERS</b>           |               |                         |      |                                                                |                          |               |            |
| Onsite Basin Area       | 23.83                                                                                          | ft <sup>2</sup> |                         |               |                         |      | E                                                              | Basin Lim                | its           |            |
| Pond Parcel Area        | 0.00                                                                                           | ft <sup>2</sup> |                         |               |                         |      | 1768+00                                                        | to                       | 1792+00       |            |
| Total Area              | 23.83                                                                                          | ft <sup>2</sup> |                         |               |                         |      |                                                                |                          |               |            |
| CURVE NUMBER CALCUA     | TION:                                                                                          |                 |                         |               |                         |      |                                                                |                          |               |            |
|                         | TYPE A SC                                                                                      | u s             | TYPE B SC               | 011.5         | TYPE C SC               | DILS | TYPE D SC                                                      | ILS                      |               |            |

|                        | TYPE A SOILS               |     | TYPE B SOILS               |     | TYPE C SOILS               |   | TYPE D SOILS               |        | CN*A    | TOTAL AREA |  |
|------------------------|----------------------------|-----|----------------------------|-----|----------------------------|---|----------------------------|--------|---------|------------|--|
| LAND USE               | AREA (ft <sup>2</sup> ) CN |     | AREA (ft <sup>2</sup> ) CN |     | AREA (ft <sup>2</sup> ) CN |   | AREA (ft <sup>2</sup> ) CN |        | ur A    | TOTAL ANDA |  |
| Impervious             | 7.44                       | 98  |                            | 1 I |                            |   |                            |        | 728.93  | 7.44       |  |
|                        | 16.39                      | 39  |                            |     |                            |   |                            |        | 639.29  | 16.39      |  |
| Grass                  |                            | 39  |                            |     |                            | - |                            |        | 0.00    | 0.00       |  |
| Pond Site (Pervious)   | 0.00                       |     | _                          |     |                            |   |                            |        | 0.00    | 0.00       |  |
| Pond Site (Impervious) | 0.00                       | 100 |                            |     |                            |   |                            |        | 0.00    | 0.00       |  |
|                        | _                          |     |                            |     |                            |   |                            | +      | 0.00    | 0.00       |  |
|                        |                            |     |                            | -   |                            |   |                            |        |         |            |  |
|                        |                            |     |                            | 1   |                            |   |                            |        | 0.00    |            |  |
|                        |                            |     |                            |     |                            |   |                            |        | 0.00    | 0.00       |  |
| TOTALS                 | 23.83                      |     | 0                          |     | 0                          |   | 0                          |        | 1368.21 | 23.83      |  |
| 101/12                 |                            | -   |                            |     |                            |   | WEIGH                      | TED CN |         | 57         |  |

Potential Abstraction (S) = 7.4 S = (1000/CN) - 10

Estimated Runoff Volume = 20.67 ac-ft Peak Volume = A x Q

NOAA Atlas 14

Runoff Depth (Q) = 10.4 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

### PO

| Onsite Basin Area | 23.83 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 0.00 ft <sup>2</sup>  |
| Total Area        | 23.83 ft <sup>2</sup> |

### CU

Rainfall Depth for 100yr-240hr (P) = 16.9 in

### Pond Name: 18-4 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |           | 23.83 ac           |          |  |  |  |  |  |  |  |
|-------------------------------------------------|-----------|--------------------|----------|--|--|--|--|--|--|--|
| Weighted C                                      |           | 0.43               |          |  |  |  |  |  |  |  |
| Total Impervious                                | 0.95      | 7.44 ac            |          |  |  |  |  |  |  |  |
| Total Pervious                                  | 0.20      | 16.39 ac           |          |  |  |  |  |  |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |           | N                  |          |  |  |  |  |  |  |  |
| Required Treatment (Runoff from 1" Rainfall)    |           | 0.86 ac-ft         |          |  |  |  |  |  |  |  |
| Required Treatment (1/2" over Area)             |           | ver is greater)    |          |  |  |  |  |  |  |  |
|                                                 |           | 0.99 ac-ft         |          |  |  |  |  |  |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):    |           |                    |          |  |  |  |  |  |  |  |
| Existing Runoff Volume                          |           | 15.56 ac-ft        |          |  |  |  |  |  |  |  |
| Proposed Runoff Volume                          |           | 20.67 ac-ft        |          |  |  |  |  |  |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volume | e         | 5.11 ac-ft         |          |  |  |  |  |  |  |  |
| Floodplain Com                                  | pensation | 0.00 ac-ft         |          |  |  |  |  |  |  |  |
| TOTAL                                           | STORAGE   | 5.11 ac-ft         |          |  |  |  |  |  |  |  |
| 3) Estimated Pond Configuration:                |           |                    |          |  |  |  |  |  |  |  |
| Maintenance Berm Width                          | 20.0 ft   | Freeboard          | 1.0 ft   |  |  |  |  |  |  |  |
| L/W Ratio                                       | 2.0       | Side Slopes (1:H)  | 4.0      |  |  |  |  |  |  |  |
| Maximum Treatment Volume Depth                  | 1.5 ft    | Wet/Dry            | Dry      |  |  |  |  |  |  |  |
| Maximum Pond Depth Below Freeboard              | 5.0 ft    | Assumed Control EL | 51.00 ft |  |  |  |  |  |  |  |
|                                                 |           |                    |          |  |  |  |  |  |  |  |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 333 ft  |
|---------------|---------|
| WTOP OF SLOPE | 166 ft  |
| Area          | 1.27 ac |

| LSITE | 447 ft  |
|-------|---------|
| WSITE | 248 ft  |
| Area  | 2.54 ac |

|     | Pond           | <u>18-4</u> | 0         |                   |       |       |          |          |
|-----|----------------|-------------|-----------|-------------------|-------|-------|----------|----------|
|     | <u>Contour</u> | <u>Area</u> | Storage   | <u>Cumulative</u> | Notes |       |          |          |
| GIS | 48             | 229501      | 0.0       | 0.0               |       |       |          |          |
| GIS | 49             | 254584      | 242042.5  | 242042.5          |       |       |          |          |
| GIS | 50             | 276591      | 265587.5  | 507630.0          |       |       |          |          |
| GIS | 51             | 302455      | 289523.0  | 797153.0          |       |       |          |          |
| GIS | 52             | 335655      | 319055.0  | 1116208.0         |       |       |          |          |
| GIS | 53             | 365881      | 350768.0  | 1466976.0         |       |       |          |          |
| GIS | 54             | 417214      | 391547.5  | 1858523.5         |       |       |          |          |
| GIS | 55             | 459731      | 438472.5  | 2296996.0         | 5     | 56.16 |          |          |
| GIS | 56             | 1208075     | 833903.0  | 3130899.0         |       |       | 71.87555 |          |
| GIS | 57             | 2441396     | 1824735.5 | 4955634.5         |       | 57    | 113.7657 | 41.89016 |
| GIS | 58             | 335655      | 1388525.5 | 6344160.0         | x     |       | 78.81    |          |
| GIS | 59             | 365881      | 350768.0  | 6694928.0         |       |       |          |          |
|     |                |             |           |                   |       |       |          |          |

### Cumulative Ret (ac-ft) Below Freeboard

113.77

| Pond Area |          |
|-----------|----------|
| 27.7      | 602527   |
| 56.0      | 13.83212 |

### I-75 Pond Siting FPID: 452074-2-32-01

|                                                                                                                                                                   | ř.                                             | P    | ond Name:               |       | 2024                    |          | Full                                | Туріса               | al Section Wie  | ith          |  |              |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|------|-------------------------|-------|-------------------------|----------|-------------------------------------|----------------------|-----------------|--------------|--|--------------|--|--|
|                                                                                                                                                                   |                                                |      | Date:                   | 2/28/ | 2024                    |          |                                     |                      |                 |              |  |              |  |  |
| PRE-DEVELOPMENT RU                                                                                                                                                | JNOFF PA                                       | RAME | TERS                    |       |                         |          |                                     |                      |                 |              |  |              |  |  |
| Onsite Basin Area                                                                                                                                                 | 25                                             | ас   |                         |       |                         |          | Ba                                  | asin Lim             | lits            |              |  |              |  |  |
| Pond Parcel Area                                                                                                                                                  | 4.50                                           | ас   |                         |       |                         |          | 1792+00                             | to                   | 1821+50         |              |  |              |  |  |
| Total Area                                                                                                                                                        | 29.5                                           | ас   |                         |       |                         |          |                                     |                      |                 |              |  |              |  |  |
| CURVE NUMBER CALCUA                                                                                                                                               |                                                |      |                         |       |                         |          |                                     |                      |                 |              |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         |          |                                     | TYPE D SOILS         |                 | TYPE D SOILS |  | TYPE D SOILS |  |  |
| LAND USE                                                                                                                                                          | AREA (ft <sup>2</sup> )                        | CN   | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> )             | CN                   | CN*A            | TOTAL AREA   |  |              |  |  |
| mpvervious                                                                                                                                                        | 5.96                                           | 98   |                         |       |                         |          |                                     |                      | 584.04          | 5.96         |  |              |  |  |
| Grass                                                                                                                                                             | 19.04                                          | 39   |                         |       |                         |          |                                     |                      | 742.58          | 19.04        |  |              |  |  |
| Pond Site Pre Condition                                                                                                                                           | 4.50                                           | 39   |                         |       |                         |          |                                     |                      | 175.50          | 4.5          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         |          |                                     |                      | 0.00            | 0.0          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         |          |                                     |                      | 0.00            | 0.0          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       | ī                       |          |                                     |                      | 0.00            | 0.0          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         |          |                                     |                      | 0.00            | 0.0          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         |          |                                     |                      | 0.00            | 0.0          |  |              |  |  |
| TOTALS                                                                                                                                                            | 29.5                                           |      | 0                       |       | 0                       |          | 0                                   |                      | 1502.12         | 29.          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         | _     |                         | -        | WEIGHT                              | FED CN               |                 | 5            |  |              |  |  |
| Q = (P - 0.2S) <sup>2</sup> /(P + 0.8S)<br><b>POST-DEVELOPMENT RUNOFF PARAMETERS</b><br>Onsite Basin Area 25 ac<br>Pond Parcel Area 4.50 ac<br>Total Area 29.5 ac |                                                |      |                         |       |                         |          | Peak Volume<br>B<br>1792+00         | asin Lim             | nits<br>1821+50 |              |  |              |  |  |
| CURVE NUMBER CALCUA                                                                                                                                               | TION:                                          |      |                         |       |                         |          |                                     |                      |                 |              |  |              |  |  |
| LAND USE                                                                                                                                                          | TYPE A SO                                      |      | TYPE B SO               | -     | TYPE C SO               | -        | TYPE D SO                           |                      | CN*A            | TOTAL AREA   |  |              |  |  |
|                                                                                                                                                                   | AREA (ft <sup>2</sup> )                        | CN   | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> )             | CN                   |                 |              |  |              |  |  |
| mpervious                                                                                                                                                         | 18.29                                          | 98   |                         |       |                         | -        |                                     |                      | 1791.94         | 18.2         |  |              |  |  |
| Grass                                                                                                                                                             | 6.71                                           | 39   |                         |       |                         |          |                                     |                      | 261.88          | 6.7          |  |              |  |  |
| ond Site (Pervious)                                                                                                                                               | 2.30                                           | 39   |                         |       |                         |          |                                     |                      | 89.70           | 2.3          |  |              |  |  |
| Pond Site (Impervious)                                                                                                                                            | 2.20                                           | 100  |                         | -     |                         | <u> </u> |                                     |                      | 220.00          | 2.2          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         | -        |                                     |                      | 0.00            | 0.0          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         |          |                                     |                      | 0.00            | 0.0          |  |              |  |  |
|                                                                                                                                                                   |                                                |      |                         |       |                         | -        |                                     |                      | 0.00            | 0.0          |  |              |  |  |
| TOTALS                                                                                                                                                            | 29.5                                           |      | 0                       | -     | 0                       |          | 0                                   |                      | 2363.52         | 29.          |  |              |  |  |
| TUTALS                                                                                                                                                            | 29.5                                           |      | 0                       |       | U                       |          | WEIGH                               | ED CN                | 2303.52         | - 23.        |  |              |  |  |
|                                                                                                                                                                   | NOAA Atlas 14                                  | ļ    |                         |       |                         |          | ntial Abstractio<br>S = (1000/C     | on (S) =<br>:N) - 10 | 2.5             |              |  |              |  |  |
|                                                                                                                                                                   | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S) |      | in                      |       |                         | Estima   | <b>ted Runoff Vo</b><br>Peak Volume |                      | 35.03 a         | ac-ft        |  |              |  |  |

# Pond Name: 19 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |               | 25.00 ac            |                  |  |  |  |  |
|--------------------------------------------------|---------------|---------------------|------------------|--|--|--|--|
| Weighted C                                       |               | 0.75                |                  |  |  |  |  |
| Total Impervious                                 | 0.95          | 18.29 ac            |                  |  |  |  |  |
| Total Pervious                                   | 0.20          | 6.71 ac             |                  |  |  |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |               | N                   |                  |  |  |  |  |
| Required Treatment (Runoff from 1" Rainfall)     |               | 1.56 ac-ft ] (which | ever is greater) |  |  |  |  |
| Required Treatment (1/2" over Area)              |               | 1.04 ac-ft          |                  |  |  |  |  |
| •                                                |               | 1.56 ac-ft          |                  |  |  |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):     |               |                     |                  |  |  |  |  |
| Existing Runoff Volume                           |               | 22.39 ac-ft         |                  |  |  |  |  |
| Proposed Runoff Volume                           |               | 35.03 ac-ft         |                  |  |  |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volum   | e             | 12.64 ac-ft         |                  |  |  |  |  |
| TOTAL                                            | TOTAL STORAGE |                     |                  |  |  |  |  |
| 3) Estimated Pond Configuration:                 |               |                     |                  |  |  |  |  |
| Maintenance Berm Width                           | 20.0 ft       | Freeboard           | 1.0 ft           |  |  |  |  |
| L/W Ratio                                        | 2.0           | Side Slopes (1:H)   | 4.0              |  |  |  |  |
| Maximum Treatment Volume Depth                   | 1.5 ft        | Wet/Dry             | Dry              |  |  |  |  |
| Maximum Pond Depth Below Freeboard               | 7.0 ft        | Assumed Control EL  | . ft             |  |  |  |  |
|                                                  |               |                     |                  |  |  |  |  |
| 4) Estimated Pond Dimensions Including Freeboard |               |                     |                  |  |  |  |  |

| LTOP OF SLOPE | 441 ft  |
|---------------|---------|
| WTOP OF SLOPE | 220 ft  |
| Area          | 2.23 ac |

| LSITE | 577 ft  |
|-------|---------|
| WSITE | 312 ft  |
| Area  | 4.14 ac |

### I-75 Pond Siting FPID: 452074-2-32-01

|                                                                                                                                                                                                                  |                                                                                                                                                                                               | ond Name:                                                         |                         |           | Full                                |        |                                                                                          | dth                                                         |                                                                                               |                                                             |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|-------------------------|-----------|-------------------------------------|--------|------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|
|                                                                                                                                                                                                                  |                                                                                                                                                                                               |                                                                   | Date:                   | 2/28/     | 2024                                |        |                                                                                          |                                                             |                                                                                               |                                                             |
| RE-DEVELOPMENT RU                                                                                                                                                                                                |                                                                                                                                                                                               | RAME                                                              | TERS                    |           |                                     |        |                                                                                          |                                                             |                                                                                               |                                                             |
| nsite Basin Area                                                                                                                                                                                                 | 9.3                                                                                                                                                                                           | ас                                                                |                         |           |                                     |        | В                                                                                        | asin Lim                                                    | its                                                                                           |                                                             |
| ond Parcel Area                                                                                                                                                                                                  | 2.40                                                                                                                                                                                          | ac                                                                |                         |           |                                     | 1      | 1821+50                                                                                  | to                                                          | 1835+00                                                                                       |                                                             |
|                                                                                                                                                                                                                  |                                                                                                                                                                                               |                                                                   |                         |           |                                     |        |                                                                                          |                                                             | 1000                                                                                          |                                                             |
| otal Area                                                                                                                                                                                                        | 11.7                                                                                                                                                                                          | ас                                                                |                         |           |                                     |        |                                                                                          |                                                             |                                                                                               |                                                             |
| URVE NUMBER CALCUA                                                                                                                                                                                               | TION:                                                                                                                                                                                         |                                                                   |                         |           |                                     |        |                                                                                          |                                                             |                                                                                               |                                                             |
| LAND USE                                                                                                                                                                                                         | TYPE A SO                                                                                                                                                                                     |                                                                   | TYPE B SO               |           | TYPE C SO                           |        | TYPE D SO                                                                                |                                                             | CN*A                                                                                          | TOTAL AREA                                                  |
|                                                                                                                                                                                                                  | AREA (ft <sup>2</sup> )                                                                                                                                                                       | CN                                                                | AREA (ft <sup>2</sup> ) | CN        | AREA (ft <sup>2</sup> )             | CN     | AREA (ft <sup>2</sup> )                                                                  | CN                                                          | 0.07.07                                                                                       |                                                             |
| npvervious                                                                                                                                                                                                       | 2.73                                                                                                                                                                                          | 98                                                                |                         |           |                                     |        |                                                                                          |                                                             | 267.27                                                                                        | 2.7                                                         |
| rass                                                                                                                                                                                                             | 6.57                                                                                                                                                                                          | 39                                                                |                         |           |                                     |        |                                                                                          |                                                             | 256.34                                                                                        | 6.5                                                         |
| ond Site Pre Condition                                                                                                                                                                                           | 2.40                                                                                                                                                                                          | 39                                                                |                         |           |                                     |        |                                                                                          |                                                             | 93.60                                                                                         | 2.4                                                         |
|                                                                                                                                                                                                                  |                                                                                                                                                                                               |                                                                   |                         |           |                                     |        |                                                                                          | $\vdash$                                                    | 0.00                                                                                          | 0.0                                                         |
|                                                                                                                                                                                                                  |                                                                                                                                                                                               |                                                                   |                         |           |                                     |        |                                                                                          |                                                             | 0.00                                                                                          | 0.0                                                         |
|                                                                                                                                                                                                                  |                                                                                                                                                                                               |                                                                   |                         |           |                                     |        |                                                                                          |                                                             | 0.00                                                                                          | 0.0                                                         |
|                                                                                                                                                                                                                  |                                                                                                                                                                                               |                                                                   |                         |           |                                     |        |                                                                                          | $\vdash$                                                    | 0.00                                                                                          | 0.0                                                         |
|                                                                                                                                                                                                                  | 44 7                                                                                                                                                                                          |                                                                   | 0                       |           | 0                                   |        | 0                                                                                        |                                                             | 617.21                                                                                        | 11.                                                         |
| TOTALC                                                                                                                                                                                                           |                                                                                                                                                                                               |                                                                   | U U                     |           | U                                   |        | 0                                                                                        |                                                             | 017.21                                                                                        | 11.                                                         |
|                                                                                                                                                                                                                  | NOAA Atlas 14                                                                                                                                                                                 |                                                                   | in                      |           |                                     |        | WEIGH<br>tial Abstraction<br>S = (1000/C<br>ted Runoff Vo                                | <b>on (S) =</b><br>(N) - 10                                 | 9.0                                                                                           | 5<br>ac-ft                                                  |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2                                                                                                                                                              | <b>yr-240hr (P) =</b><br>NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                               | 9.5                                                               | in                      |           |                                     |        | tial Abstractio<br>S = (1000/C                                                           | on (S) =<br>:N) - 10<br>lume =                              |                                                                                               |                                                             |
| Rainfall Depth for 100<br>N<br>Runo                                                                                                                                                                              | <b>yr-240hr (P) =</b><br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.                                                                                         | 9.5                                                               | in                      |           |                                     |        | <b>tial Abstractic</b><br>S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume             | on (S) =<br>:N) - 10<br>lume =                              | 9.25 ;                                                                                        |                                                             |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area                                                                                                                   | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>9.3                                                                                         | 9.5<br>ARAN                                                       | in                      |           |                                     |        | <b>tial Abstractic</b><br>S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume<br><b>B</b> | on (S) =<br>CN) - 10<br>lume =<br>= A x Q<br>asin Lim       | 9.25 a                                                                                        |                                                             |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                                        | <b>yr-240hr (P) =</b><br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.                                                                                         | 9.5<br>ARAN<br>ac<br>ac                                           | in                      |           |                                     |        | <b>tial Abstractic</b><br>S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume             | on (S) =<br>:N) - 10<br>lume =<br>= A x Q                   | 9.25 ;                                                                                        |                                                             |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area                                                                                              | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7                                                                         | 9.5<br>ARAN<br>ac<br>ac                                           | in                      |           |                                     |        | <b>tial Abstractic</b><br>S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume<br><b>B</b> | on (S) =<br>CN) - 10<br>lume =<br>= A x Q<br>asin Lim       | 9.25 a                                                                                        |                                                             |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Dnsite Basin Area<br>Tond Parcel Area<br>Total Area                                                                                 | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7                                                                         | 9.5<br>ARAN<br>ac<br>ac<br>ac                                     | in                      | NLS       | TYPE C SO                           | Estima | <b>tial Abstractic</b><br>S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume<br><b>B</b> | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25 a                                                                                        | ac-ft                                                       |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Dosite Basin Area<br>ond Parcel Area<br>otal Area                                                                                   | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7                                                                         | 9.5<br>ARAN<br>ac<br>ac<br>ac                                     | in<br>in<br>1ETERS      | ILS<br>CN | TYPE C SO<br>AREA (R <sup>2</sup> ) | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25 a                                                                                        | 5.<br>ac-ft<br>TOTAL AREA                                   |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Dnsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA                                                            | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:                                                                | 9.5<br>ARAIV<br>ac<br>ac<br>ac<br>ac                              | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25 a<br>hits<br>1835+00<br>CN*A<br>820.04                                                   | ac-ft<br>TOTAL AREA<br>8.3                                  |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass                         | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                        | 9.5<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>sc<br>N<br>98<br>39  | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25<br>hits<br>1835+00<br>CN*A<br>820.04<br>36.36                                            | ac-ft<br>Total Area<br>8.3<br>0.9                           |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>8.37<br>0.93<br>1.25 | 9.5<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>sc<br>98<br>39<br>39 | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25<br>hits<br>1835+00<br>CN*A<br>820.04<br>36.36<br>48.75                                   | TOTAL AREA<br>8.3<br>0.9<br>1.2                             |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious)  | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>8.37<br>0.93        | 9.5<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>sc<br>N<br>98<br>39  | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25<br>bits<br>1835+00<br>CN*A<br>820.04<br>36.36<br>48.75<br>115.00                         | TOTAL AREA<br>8.3<br>0.9<br>1.2<br>1.1                      |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious)  | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>8.37<br>0.93<br>1.25 | 9.5<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>sc<br>98<br>39<br>39 | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25<br>bits<br>1835+00<br>CN*A<br>820.04<br>36.36<br>48.75<br>115.00<br>0.00                 | TOTAL AREA<br>8.3<br>0.9<br>1.2<br>1.1<br>0.0               |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE                                               | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>8.37<br>0.93<br>1.25 | 9.5<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>sc<br>98<br>39<br>39 | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25<br>bits<br>1835+00<br>CN*A<br>820.04<br>36.36<br>48.75<br>115.00<br>0.00<br>0.00         | TOTAL AREA<br>8.3<br>0.9<br>1.2<br>1.1<br>0.0<br>0.0        |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>8.37<br>0.93<br>1.25 | 9.5<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>sc<br>98<br>39<br>39 | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25<br>bits<br>1835+00<br>CN*A<br>820.04<br>36.36<br>48.75<br>115.00<br>0.00<br>0.00<br>0.00 | TOTAL AREA<br>8.3<br>0.9<br>1.2<br>1.1<br>0.0<br>0.0<br>0.0 |
| Rainfall Depth for 100<br>N<br>Runor<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mpervious<br>irass<br>ond Site (Pervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>9.3<br>2.40<br>11.7<br>TION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>8.37<br>0.93<br>1.25 | 9.5<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>sc<br>98<br>39<br>39 | in<br>in<br>METERS      |           |                                     | Estima | tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>1821+50           | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.25<br>bits<br>1835+00<br>CN*A<br>820.04<br>36.36<br>48.75<br>115.00<br>0.00<br>0.00         | TOTAL AREA<br>8.3<br>0.9<br>1.2<br>1.1                      |

ainfall Depth for 100yr-240hr (P) = 16.9 NOAA Atlas 14

,

**Runoff Depth (Q) =** 15.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$  S = (1000/CN) - 10

Estimated Runoff Volume = 14.88 ac-ft Peak Volume = A x Q

### Pond Name: 20-1 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |               | 9.30 ac      |                            |             |  |  |
|------------------------------------------------|---------------|--------------|----------------------------|-------------|--|--|
| Weighted C                                     |               | 0.87         |                            |             |  |  |
| Total Impervious                               | 0.95          | 8.37 ac      |                            |             |  |  |
| Total Pervious                                 | 0.20          | 0.93 ac      |                            |             |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |               | N            |                            |             |  |  |
| Required Treatment (Runoff from 1" Rainfall)   |               | 0.68 ac-ft ک | (whichever                 | is greater) |  |  |
| Required Treatment (1/2" over Area)            |               | 0.39 ac-ft 🗍 | -ft (whichever is greater) |             |  |  |
|                                                |               | 0.68 ac-ft   |                            |             |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |               |              |                            |             |  |  |
| Existing Runoff Volume                         |               | 9.25 ac-ft   |                            |             |  |  |
| Proposed Runoff Volume                         |               | 14.88 ac-ft  |                            |             |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volum | e             | 5.63 ac-ft   |                            |             |  |  |
| Floodplain Com                                 | pensation     | 0.00 ac-ft   |                            |             |  |  |
| TOTAL                                          | TOTAL STORAGE |              |                            |             |  |  |
| 3) Estimated Pond Configuration:               |               |              |                            |             |  |  |
| Maintenance Berm Width                         | 20.0 ft       | Freeboard    |                            | 1.0 ft      |  |  |
| L/W Ratio                                      | 2.0           | Side Slopes  | s (1:H)                    | 4.0         |  |  |
| Maximum Treatment Volume Depth                 | 1.5 ft        | Wet/Dry      |                            | Dry         |  |  |
| Maximum Pond Depth Below Freeboard             | 7.0 ft        | Assumed C    | ontrol EL                  | 79.00 ft    |  |  |
|                                                |               |              |                            |             |  |  |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 306 ft  |
|---------------|---------|
| WTOP OF SLOPE | 153 ft  |
| Area          | 1.08 ac |

| LSITE | 415 ft  |
|-------|---------|
| WSITE | 232 ft  |
| Area  | 2.21 ac |

|            | Pond                       | <u>20-1</u>                   | 0                                 |                                      |         |              |
|------------|----------------------------|-------------------------------|-----------------------------------|--------------------------------------|---------|--------------|
| GIS<br>GIS | <u>Contour</u><br>79<br>86 | <u>Area</u><br>37417<br>61930 | <u>Storage</u><br>0.0<br>347714.5 | <u>Cumulative</u><br>0.0<br>347714.5 | Soil 15 | <u>Notes</u> |

Cumulative Ret (ac-ft) Below Freeboard

7.98

Pond Area 1.4

# I-75 Pond Siting

# FDID: 452074-2-32-01

|                         |                                                       |       | FPIC                    | ): 4520               | 74-2-32-01              |          |                                |                 |               |            |
|-------------------------|-------------------------------------------------------|-------|-------------------------|-----------------------|-------------------------|----------|--------------------------------|-----------------|---------------|------------|
|                         |                                                       | P     | ond Name:<br>Date:      | 2 <b>0-2</b><br>2/28/ | 2024                    |          | Full                           | Typica          | al Section Wi | dth        |
| PRE-DEVELOPMENT RU      | <b>INOFF PA</b>                                       | RAME  | TERS                    |                       |                         |          | _                              |                 |               |            |
| Onsite Basin Area       | 9.3                                                   | ac    |                         |                       |                         |          | B                              | asin Lim        | nts           |            |
| Pond Parcel Area        | 2.40                                                  | ac    |                         |                       |                         |          | 1821+50                        | to              | 1835+00       |            |
| Total Area              | 11.7                                                  | ac ac |                         |                       |                         |          |                                |                 |               |            |
| CURVE NUMBER CALCUA     | TION:                                                 |       |                         |                       |                         |          |                                |                 |               |            |
|                         | TYPE A SO                                             | ILS   | TYPE B SO               | ILS                   | TYPE C SO               | ILS      | TYPE D SO                      | ILS             | CN*A          | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                               | CN    | AREA (ft <sup>2</sup> ) | CN                    | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> )        | CN              |               |            |
| Impvervious             | 2.73                                                  | 98    |                         |                       |                         |          |                                |                 | 267.27        | 2.73       |
| Grass                   | 6.57                                                  | 39    |                         |                       |                         |          |                                |                 | 256.34        | 6.57       |
| Pond Site Pre Condition | 2.40                                                  | 39    |                         |                       |                         |          |                                | $\vdash$        | 93.60         | 2.40       |
|                         |                                                       |       |                         |                       |                         |          |                                | $ \rightarrow $ | 0.00          | 0.00       |
|                         |                                                       |       |                         |                       |                         |          |                                |                 | 0.00          | 0.00       |
|                         |                                                       |       |                         | -                     |                         | <u> </u> |                                |                 | 0.00          | 0.00       |
|                         |                                                       |       |                         |                       |                         |          |                                |                 | 0.00          | 0.00       |
|                         | 44.7                                                  |       | 0                       |                       | 0                       |          | 0                              |                 | 617.21        | 11.7       |
| TOTALS                  | 11.7                                                  |       |                         | 1                     |                         |          | WEIGH                          | TED CN          |               | 53         |
| Rainfall Depth for 100  | <b>yr-240hr (P)</b> =<br>IOAA Atlas 14                |       | in                      |                       |                         | Poter    | ntial Abstracti<br>S = (1000/0 |                 | 9.0           |            |
|                         | ff <b>Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S) |       | in                      |                       |                         | Estima   | ted Runoff Vo<br>Peak Volume   |                 | 9.25          | ac-ft      |

# POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 9.3  | ас |
|-------------------|------|----|
| Pond Parcel Area  | 2.40 | ас |
| Total Area        | 11.7 | ac |

**Basin Limits** 1821+50 to 1835+00

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SC               | OILS TYPE B |                         | TYPE B SOILS |                         | TYPE C SOILS |                         | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-------------|-------------------------|--------------|-------------------------|--------------|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN          | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN     |         |            |
| Impervious             | 8.37                    | 98          |                         |              |                         | 1            |                         |        | 820.04  | 8.37       |
|                        | 0.93                    | 39          |                         |              |                         |              |                         |        | 36.36   | 0.93       |
| Grass                  | 1.25                    | 39          |                         |              |                         |              |                         |        | 48.75   | 1.25       |
| Pond Site (Pervious)   |                         | 100         |                         |              |                         |              |                         | +      | 115.00  | 1.15       |
| Pond Site (Impervious) | 1.15                    | 100         | _                       |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         | +           |                         | + +          |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         | ++          |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         | +           |                         |              |                         |              |                         |        | 0.00    | 0.00       |
| TOTALS                 | 11.7                    | +-+         | 0                       |              | 0                       |              | 0                       |        | 1020.15 | 11.7       |
| TOTALS                 | 11.7                    | -           |                         |              |                         |              | WEIGH                   | TED CN |         | 87         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.3 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 1.5 S = (1000/CN) - 10

Estimated Runoff Volume = ac-ft 14.88 Peak Volume = A x Q

### Pond Name: 20-2 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |            | 9.30 ac              |                |  |
|------------------------------------------------|------------|----------------------|----------------|--|
| Weighted C                                     |            | 0.87                 |                |  |
| Total Impervious                               | 0.95       | 8.37 ac              |                |  |
| Total Pervious                                 | 0.20       | 0.93 ac              |                |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |            | N                    |                |  |
| Required Treatment (Runoff from 1" Rainfall)   |            | 0.68 ac-ft (whicheve | er is greater) |  |
| Required Treatment (1/2" over Area)            |            | 0.39 ac-ft           | and Breatery   |  |
|                                                | 0.68 ac-ft |                      |                |  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |            |                      |                |  |
| Existing Runoff Volume                         |            | 9.25 ac-ft           |                |  |
| Proposed Runoff Volume                         |            | 14.88 ac-ft          |                |  |
| EPAV = Proposed Runoff - Existing Runoff Volum | e          | 5.63 ac-ft           |                |  |
| Floodplain Comp                                | ensation   | 0.00 ac-ft           |                |  |
| TOTALS                                         | TORAGE     | 6.30 ac-ft           |                |  |
| 3) Estimated Pond Configuration:               |            |                      |                |  |
| Maintenance Berm Width                         | 20.0 ft    | Freeboard            | 1.0 ft         |  |
| L/W Ratio                                      | 2.0        | Side Slopes (1:H)    | 4.0            |  |
| Maximum Treatment Volume Depth                 | 1.5 ft     | Wet/Dry              | Dry            |  |
| Maximum Pond Depth Below Freeboard             | 7.0 ft     | Assumed Control EL   | 79.00 ft       |  |
|                                                |            |                      |                |  |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 322 ft  |
|---------------|---------|
| WTOP OF SLOPE | 161 ft  |
| Area          | 1.19 ac |

| LSITE | 434 ft  |
|-------|---------|
| WSITE | 241 ft  |
| Area  | 2.40 ac |

|            | Pond                       | <u>20-2</u>                   | 0                                 |                                      |         |              |
|------------|----------------------------|-------------------------------|-----------------------------------|--------------------------------------|---------|--------------|
| GIS<br>GIS | <u>Contour</u><br>78<br>85 | <u>Area</u><br>29937<br>52494 | <u>Storage</u><br>0.0<br>288508.5 | <u>Cumulative</u><br>0.0<br>288508.5 | Soil 15 | <u>Notes</u> |

# Cumulative Ret (ac-ft) Below Freeboard

6.62

Pond Area 1.2

602527 13.83212

# I-75 Pond Siting

|                         |                         |      | FPIC                    | ): 4520       | 74-2-32-01              |     |                         |          |               |            |
|-------------------------|-------------------------|------|-------------------------|---------------|-------------------------|-----|-------------------------|----------|---------------|------------|
|                         |                         | P    | ond Name:<br>Date:      | 20-3<br>2/28/ | 2024                    |     | Full                    | Туріс    | al Section Wi | dth        |
| PRE-DEVELOPMENT RU      | JNOFF PA                | RAME | TERS                    |               |                         |     |                         |          |               |            |
| Onsite Basin Area       | 9.3                     | ас   |                         |               |                         |     | B                       | asin Lin | nits          |            |
| Pond Parcel Area        | 2.40                    | ас   |                         |               |                         |     | 1821+50                 | to       | 1835+00       |            |
| Total Area              | 11.7                    | ас   |                         |               |                         |     |                         |          |               |            |
| CURVE NUMBER CALCUA     | TION:<br>TYPE A SO      | ILS  | TYPE B SO               | ILS           | TYPE C SO               | ILS | TYPE D SO               | ILS      |               |            |
| LAND USE                | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN            | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN       | CN*A          | TOTAL AREA |
| Impvervious             | 2.73                    | 98   |                         |               |                         |     |                         |          | 267.27        | 2.73       |
| Grass                   | 6.57                    | 39   |                         |               |                         |     |                         |          | 256.34        | 6.57       |
| Pond Site Pre Condition | 2.40                    | 39   |                         |               |                         |     | 1                       |          | 93.60         | 2.40       |
|                         |                         |      |                         |               |                         |     |                         |          | 0.00          | 0.00       |
|                         |                         |      |                         |               |                         |     |                         |          | 0.00          | 0.00       |
|                         |                         |      |                         |               |                         |     | <u> </u>                |          | 0.00          | 0.00       |
|                         |                         |      |                         |               |                         |     |                         |          | 0.00          | 0.00       |
|                         |                         |      |                         |               |                         |     |                         |          | 0.00          | 0.0        |
| TOTALS                  |                         |      |                         |               |                         |     |                         |          |               |            |
|                         | 11.7                    |      | 0                       |               | 0                       | ļ   | 0                       |          | 617.21        | 11.        |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 9.5 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 9.3  | ас |
|-------------------|------|----|
| Pond Parcel Area  | 2.40 | ас |
| Total Area        | 11.7 | ас |

Potential Abstraction (S) = 9.0 S = (1000/CN) - 10

Estimated Runoff Volume = 9.25 ac-ft Peak Volume = A x Q

2.73 6.57 2.40 0.00 0.00 0.00 0.00 0.00 11.7 53

**Basin Limits** 1821+50 1835+00 to

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |     | TYPE B SOILS |    | TYPE C SOILS            |    | TYPE D SOILS            |        |         | TOTAL MACA |
|------------------------|-------------------------|-----|--------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft²)   | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CN*A    | TOTAL AREA |
| Impervious             | 8.37                    | 98  |              |    |                         |    |                         |        | 820.04  | 8.37       |
| Grass                  | 0.93                    | 39  |              |    |                         |    |                         |        | 36.36   | 0.93       |
| Pond Site (Pervious)   | 1.25                    | 39  |              |    |                         |    |                         |        | 48.75   | 1.25       |
| Pond Site (Impervious) | 1.15                    | 100 |              |    |                         |    |                         |        | 115.00  | 1.15       |
|                        |                         |     |              |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |              |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |              |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |              |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 11.7                    |     | 0            |    | 0                       |    | 0                       |        | 1020.15 | 11.7       |
|                        |                         |     |              |    |                         |    | WEIGH                   | TED CN |         | 87         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.3 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

S = (1000/CN) - 10

Estimated Runoff Volume = 14.88 ac-ft Peak Volume = A x Q

Potential Abstraction (S) =

## Pond Name: 20-3 Date: 2/28/2024

## POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                                        |           | 9.30 ac             |                |
|------------------------------------------------------------------------|-----------|---------------------|----------------|
| Weighted C                                                             |           | 0.87                |                |
| Total Impervious                                                       | 0.95      | 8.37 ac             |                |
| Total Pervious                                                         | 0.20      | 0.93 ac             |                |
| Outstanding FL Water (Y/N)[multiply x 1.5]                             |           | N                   |                |
| Required Treatment (Runoff from 1" Rainfall)                           |           | 0.68 ac-ft (whichev | er is greater) |
| Required Treatment (1/2" over Area)                                    |           | 0.39 ac-ft          |                |
|                                                                        |           | 0.68 ac-ft          |                |
| 2) Estimated Peak Attenuation Volume (EPAV):<br>Existing Runoff Volume |           | 9.25 ac-ft          |                |
| Proposed Runoff Volume                                                 |           | 14.88 ac-ft         |                |
| EPAV = Proposed Runoff - Existing Runoff Volum                         | e         | 5.63 ac-ft          |                |
| Floodplain Com                                                         | pensation | 0.00 ac-ft          |                |
| TOTAL                                                                  | STORAGE   | 6.30 ac-ft          |                |
| 3) Estimated Pond Configuration:                                       |           |                     |                |
| Maintenance Berm Width                                                 | 20.0 ft   | Freeboard           | 1.0 ft         |
| L/W Ratio                                                              | 2.0       | Side Slopes (1:H)   | 4.0            |
| Maximum Treatment Volume Depth                                         | 1.5 ft    | Wet/Dry             | Dry            |
| Maximum Pond Depth Below Freeboard                                     | 7.0 ft    | Assumed Control EL  | 79.00 ft       |
|                                                                        |           |                     |                |

## 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 322 ft  |
|---------------|---------|
| WTOP OF SLOPE | 161 ft  |
| Area          | 1.19 ac |

| LSITE | 434 ft  |
|-------|---------|
| WSITE | 241 ft  |
| Area  | 2.40 ac |

|                                        | Pond                       | <u>20-3</u>                   | 0                                 |                                      |         |              |  |  |  |
|----------------------------------------|----------------------------|-------------------------------|-----------------------------------|--------------------------------------|---------|--------------|--|--|--|
| GIS<br>GIS                             | <u>Contour</u><br>79<br>86 | <u>Area</u><br>32981<br>60609 | <u>Storage</u><br>0.0<br>327565.0 | <u>Cumulative</u><br>0.0<br>327565.0 | Soil 15 | <u>Notes</u> |  |  |  |
| Cumulative Ret (ac-ft) Below Freeboard |                            |                               |                                   |                                      |         |              |  |  |  |

7.52

Pond Area 1.4

## I-75 Pond Siting

FPID: 452074-2-32-01

| Pond Name: | 21-1      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

## PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 23.42 ad | 2 |
|-------------------|----------|---|
| Pond Parcel Area  | 4.80 ad  | 2 |
| Total Area        | 28.22 ad | c |

Basin Limits
1835+00 to 1857+00

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SOILS            |    | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA  |
|-------------------------|-------------------------|----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|-------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN     |         | TOTAL MILLS |
| Impvervious             | 4.44                    | 98 |                         |    |                         |    |                         |        | 435.56  | 4.44        |
|                         | 18.98                   | 39 |                         |    |                         |    |                         |        | 740.05  | 18.98       |
| Grass                   |                         | 39 |                         |    |                         |    |                         |        | 187.20  | 4.80        |
| Pond Site Pre Condition | 4.80                    | 39 |                         |    |                         |    |                         | +      | 0.00    | 0.00        |
|                         |                         | +  |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00        |
| TOTALS                  | 28.22                   |    | 0                       |    | 0                       |    | 0                       |        | 1362.80 | 28.22       |
| TOTALS                  | 20.22                   | 1  |                         |    |                         |    | WEIGH                   | TED CN |         | 48          |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 8.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

## Potential Abstraction (5) = 10.7 S = (1000/CN) - 10

Estimated Runoff Volume = 20.11 ac-ft Peak Volume = A x Q

## POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 23.42 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.80  | ас |
| Total Area        | 28.22 | ас |

| Basin Limits |    |         |  |  |  |  |  |  |
|--------------|----|---------|--|--|--|--|--|--|
| 1835+00      | to | 1857+00 |  |  |  |  |  |  |

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | TYPE B SOILS            |      | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|------|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | di A    |            |
| Impaguious             | 13.64                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      |                         |    |                         |        | 1336.36 | 13.64      |
| Impervious             | 9.78                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      |                         |    |                         |        | 381.56  | 9.78       |
| Grass                  | 2.60                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |      |                         |    |                         |        | 101.40  | 2.60       |
| Pond Site (Pervious)   |                         | other Designation of the local division in which the local division is not the local division of the local division is not the local division of the local |                         | + +  |                         |    |                         |        | 220.00  | 2.20       |
| Pond Site (Impervious) | 2.20                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | ┼──┨ |                         |    |                         | ++     | 0.00    | 0.00       |
|                        |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |      |                         |    |                         | +      | 0.00    | 0.00       |
|                        |                         | + +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         | + +  |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |      |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 28.22                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                       |      | 0                       |    | 0                       |        | 2039.33 | 28.22      |
| TOTALS                 | 20.22                   | <u></u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                         | 44   |                         | 1  | WEIGH                   | TED CN |         | 72         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 13.0 in Q =  $(P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (\$) = 3.8 S = (1000/CN) - 10

Estimated Runoff Volume = 30.65 ac-ft Peak Volume = A x Q

Pond Name: 21-1 Date: 2/28/2024

#### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W       |                          |      | 23.42 ac     |                        |
|-----------------------|--------------------------|------|--------------|------------------------|
| Weighted C            |                          |      | 0.64         |                        |
|                       | Total Impervious         | 0.95 | 13.64 ac     |                        |
|                       | Total Pervious           | 0.20 | 9.78 ac      |                        |
| Outstanding FL Water  | (Y/N)[multiply x 1.5]    |      | N            |                        |
| Required Treatment (I | Runoff from 1" Rainfall) |      | ן 1.24 ac-ft | (whichever is greater) |
| Required Treatment (  | 1/2" over Area)          |      | 0.98 ac-ft 🕇 | (whichever is greater) |
|                       |                          |      | 1.24 ac-ft   |                        |

#### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 20.11 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 30.65 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 10.53 ac-ft |
| Floodplain Compensation                         | 1.13 ac-ft  |
| TOTAL STORAGE                                   | 12.91 ac-ft |

### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft |
|------------------------------------|---------|--------------------|--------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0    |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry    |
| Maximum Pond Depth Below Freeboard | 7.0 ft  | Assumed Control EL | ft     |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 445 ft  |
|---------------|---------|
| WTOP OF SLOPE | 222 ft  |
| Area          | 2.27 ac |

| LSITE | 582 ft  |
|-------|---------|
| WSITE | 315 ft  |
| Area  | 4.21 ac |

### Pond 21-1 0

.

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | <u>Cumulative</u> | <u>Notes</u> |
|-----|----------------|-------------|----------------|-------------------|--------------|
| GIS | 79             | 87757       | 0.0            | 0.0               | Soil 15      |
| GIS | 86             | 127503      | 753410.0       | 753410.0          |              |

Cumulative Ret (ac-ft) Below Freeboard

17.30

Pond Area 2.9

# POND SIZING CALCULATIONS I-75 Pond Siting

| FPID       | : 452074-2-32-01 |      |                       |
|------------|------------------|------|-----------------------|
| Pond Name: | 21-2             | Full | Typical Section Width |
| Date:      | 2/28/2024        | -    |                       |
|            |                  |      |                       |

## PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 23.42 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.80  | ас |
| Total Area        | 28.22 | ac |

Basin Limits 1835+00 to 1857+00

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         | TOTALAREA  |
| Impvervious             | 4.44                    | 98  |                         |     |                         |    |                         |        | 435.56  | 4.44       |
| Grass                   | 18.98                   | 39  |                         | 1 1 |                         |    |                         |        | 740.05  | 18.98      |
| Pond Site Pre Condition | 4.80                    | 39  |                         |     |                         |    |                         |        | 187.20  | 4.80       |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 28.22                   | Î   | 0                       | 1   | 0                       |    | 0                       |        | 1362.80 | 28.22      |
|                         |                         |     |                         |     |                         | 19 | WEIGH                   | TED CN |         | 48         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 8.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

## S = (1000/CN) - 10 Estimated Runoff Volume =

Potential Abstraction (S) =

Peak Volume = A x Q

## **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 23.42 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 4.80  | ac |
| Total Area        | 28.22 | ас |

Basin Limits
1835+00 to 1857+00

10.7

20.11

ac-ft

#### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SOILS            |     | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UNA     | IVIALAREA  |
| Impervious             | 13.64                   | 98  |                         |     |                         |    |                         |        | 1336.36 | 13.64      |
| Grass                  | 9.78                    | 39  |                         |     |                         |    |                         |        | 381.56  | 9.78       |
| Pond Site (Pervious)   | 2.60                    | 39  |                         |     |                         |    |                         |        | 101.40  | 2.60       |
| Pond Site (Impervious) | 2.20                    | 100 |                         |     |                         |    |                         |        | 220.00  | 2.20       |
|                        |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         | 1 1 |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 28.22                   |     | 0                       | Î   | 0                       |    | 0                       |        | 2039.33 | 28.22      |
|                        |                         |     |                         |     |                         |    | WEIGH                   | TED CN |         | 72         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 13.0 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 3.8 S = (1000/CN) - 10

Estimated Runoff Volume = 30.65 ac-ft Peak Volume = A x Q

Pond Name: 21-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                    |               |      | 23.42 ac   |   |                        |
|------------------------------------|---------------|------|------------|---|------------------------|
| Weighted C                         |               |      | 0.64       |   |                        |
| Tota                               | al Impervious | 0.95 | 13.64 ac   |   |                        |
| т                                  | otal Pervious | 0.20 | 9.78 ac    |   |                        |
| Outstanding FL Water (Y/N)[multipl | y x 1.5]      |      | N          |   |                        |
| Required Treatment (Runoff from 1  | " Rainfall)   |      | 1.24 ac-ft | ſ | (whichever is greater) |
| Required Treatment (1/2" over Are  | a)            |      | 0.98 ac-ft | ſ | (whichever is greater) |
| •                                  |               |      | 1.24 ac-ft |   |                        |

## 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 20.11 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 30.65 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 10.53 ac-ft |
| Floodplain Compensation                         | 1.13 ac-ft  |
| TOTAL STORAGE                                   | 12.91 ac-ft |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 | ft | Freeboard          | 1.0 ft   |
|------------------------------------|------|----|--------------------|----------|
| L/W Ratio                          | 2.0  |    | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5  | ft | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 7.0  | ft | Assumed Control EL | 79.00 ft |

## 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 445 ft  |
|---------------|---------|
| WTOP OF SLOPE | 222 ft  |
| Area          | 2.27 ac |

| LSITE | 582 ft  |
|-------|---------|
| WSITE | 315 ft  |
| Area  | 4.21 ac |

#### Pond 21-2 0

|     | <u>Contour</u> | <u>Area</u> | <b>Storage</b> | Cumulative | Notes   |
|-----|----------------|-------------|----------------|------------|---------|
| GIS | 79             | 83686       | 0.0            | 0.0        | Soil 15 |
| GIS | 86             | 122350      | 721126.0       | 721126.0   |         |

#### Cumulative Ret (ac-ft) Below Freeboard

16.55

Pond Area 2.8

## I-75 Pond Siting

#### FPID: 452074-2-32-01

|                   |           | Pond Name: |           | Full    | Туріс    | al Section Wi | idth |
|-------------------|-----------|------------|-----------|---------|----------|---------------|------|
|                   |           | Date:      | 2/28/2024 |         |          |               |      |
| PRE-DEVELOPMENT R | JNOFF PAF | RAMETERS   |           |         |          |               |      |
| Onsite Basin Area | 23.42     | ас         |           | Ba      | asin Lin | nits          |      |
| Rond Parcel Area  | 4.80      | ac         |           | 1835+00 | to       | 1857+00       |      |

## **CURVE NUMBER CALCUATION:**

Pond Parcel Area

Total Area

|                         | TYPE A SOILS            |    | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | al A    |            |
| mpvervious              | 4.44                    | 98 |                         | 1 1 |                         |    |                         |        | 435.56  | 4.4        |
| Grass                   | 18.98                   | 39 |                         |     |                         |    |                         |        | 740.05  | 18.9       |
| Pond Site Pre Condition | 4.80                    | 39 |                         |     |                         |    |                         |        | 187.20  | 4.8        |
| Pond Site Pre Condition | 4.00                    |    |                         |     |                         |    |                         |        | 0.00    | 0.0        |
|                         | _                       |    |                         | + + |                         |    |                         |        | 0.00    | 0.0        |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.0        |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.0        |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.0        |
| TOTALS                  | 28.22                   |    | 0                       |     | 0                       |    | 0                       |        | 1362.80 | 28.2       |
| TURE                    | 20122                   |    |                         | -   |                         | A  | WEIGH                   | TED CN |         | 4          |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 8.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

4.80 ac 28.22 ac

## POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 23.42 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 4.80  | ас |
| Total Area        | 28.22 | ас |

| Estimated Runoff Volume = | 20.11 |
|---------------------------|-------|
| Peak Volume = A x Q       |       |

S = (1000/CN) - 10

Potential Abstraction (S) =

**Basin Limits** 1835+00 1857+00 to

10.7

ac-ft

#### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SC               | DILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CH R    |            |
| Impervious             | 13.64                   | 98   |                         |    |                         |    |                         |        | 1336.36 | 13.64      |
| Grass                  | 9.78                    | 39   |                         |    |                         |    |                         |        | 381.56  | 9.78       |
| Pond Site (Pervious)   | 2.60                    | 39   |                         |    |                         |    |                         |        | 101.40  | 2.60       |
| Pond Site (Impervious) | 2.20                    | 100  |                         |    |                         |    |                         |        | 220.00  | 2.20       |
| Pond Site (Impervious) | 2.20                    | 100  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | + +  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 28.22                   | ++   | 0                       |    | 0                       |    | 0                       |        | 2039.33 | 28.22      |
| TOTALS                 | 20.22                   |      |                         |    |                         |    | WEIGH                   | TED CN |         | 72         |

Potential Abstraction (S) = 3.8 S = (1000/CN) - 10

Estimated Runoff Volume = 30.65 ac-ft Peak Volume = A x Q

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 13.0 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Pond Name: 21-3 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W        |                         |      | 23.42 ac   |   |                        |
|------------------------|-------------------------|------|------------|---|------------------------|
| Weighted C             |                         |      | 0.64       |   |                        |
|                        | Total Impervious        | 0.95 | 13.64 ac   |   |                        |
|                        | Total Pervious          | 0.20 | 9.78 ac    |   |                        |
| Outstanding FL Water ( | Y/N)[multiply x 1.5]    |      | N          |   |                        |
| Required Treatment (R  | unoff from 1" Rainfall) |      | 1.24 ac-ft | ٦ | (whichever is greater) |
| Required Treatment (1, | /2" over Area)          |      | 0.98 ac-ft | Ţ | (whichever is greater) |
|                        |                         |      | 1.24 ac-ft |   |                        |

#### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 20.11 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 30.65 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 10.53 ac-ft |
| Floodplain Compensation                         | 1.13 ac-ft  |
| TOTAL STORAGE                                   | 12.91 ac-ft |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 7.0 ft  | Assumed Control EL | 79.00 ft |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 445 ft  |
|---------------|---------|
| WTOP OF SLOPE | 222 ft  |
| Area          | 2.27 ac |

| LSITE | 582 ft  |
|-------|---------|
| WSITE | 315 ft  |
| Area  | 4.21 ac |

### Pond 21-3 0

|     | Contour | <u>Area</u> | <u>Storage</u> | <b>Cumulative</b> | <u>Notes</u> |
|-----|---------|-------------|----------------|-------------------|--------------|
| GIS | 79      | 104843      | 0.0            | 0.0               | Soil 15      |
| GIS | 86      | 142894      | 867079.5       | 867079.5          |              |

Cumulative Ret (ac-ft) Below Freeboard 19.91

> Pond Area 3.3

| 1110       |           |      |                       |
|------------|-----------|------|-----------------------|
| Pond Name: | 22-1      | Full | Typical Section Width |
| Date:      | 2/28/2024 |      |                       |

#### **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 14.14 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 5.95  | ас |
| Total Area        | 20.09 | ac |

Basin Limits 1857+00 to 1889+00

#### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SO               | ILS | TYPE C SO  | ILS | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|------------|-----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft²) | CN  | AREA (ft <sup>2</sup> ) | CN     | CNA     | TOTAL ANCA |
| Impvervious             | 6.46                    | 98  |                         |     |            |     |                         |        | 633.54  | 6.46       |
| Grass                   | 7.68                    | 39  |                         |     |            |     |                         |        | 299.34  | 7.68       |
| Pond Site Pre Condition | 5.95                    | 39  |                         |     |            |     |                         |        | 232.05  | 5.95       |
|                         |                         |     |                         |     |            |     |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |            |     |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |            |     |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |            |     |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         | 1-1 |            |     |                         |        | 0.00    | 0.00       |
| TOTALS                  | 20.09                   |     | 0                       | 1   | 0          |     | 0                       |        | 1164.92 | 20.09      |
|                         |                         | A   |                         | - A |            |     | WEIGH                   | TED CN |         | 58         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 10.5 in Q =  $(P - 0.2S)^2/(P + 0.8S)$ 

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 14.14 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 5.95 ft <sup>2</sup>  |
| Total Area        | 20.09 ft <sup>2</sup> |

| Potential Abstraction (S) = | 7.2 |
|-----------------------------|-----|
| S = (1000/CN) - 10          |     |

Estimated Runoff Volume = 17.61 ac-ft Peak Volume = A x Q

 Basin Limits

 1857+00
 to
 1889+00

#### **CURVE NUMBER CALCUATION:**

| LAND USE               |                         | TYPE A SOILS TYPE B SOILS |                         | TYPE B SOILS                             |                         | TYPE C SOILS |                         | TYPE C SOILS |         | TYPE D SOILS |  | CN*A | TOTAL AREA |
|------------------------|-------------------------|---------------------------|-------------------------|------------------------------------------|-------------------------|--------------|-------------------------|--------------|---------|--------------|--|------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN                        | AREA (ft <sup>2</sup> ) | CN                                       | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | UNA     | TOTALAREA    |  |      |            |
| Impervious             | 12.73                   | 98                        |                         |                                          |                         |              |                         |              | 1247.54 | 12.73        |  |      |            |
| Grass                  | 1.41                    | 39                        |                         |                                          |                         |              |                         |              | 54.99   | 1.41         |  |      |            |
| Pond Site (Pervious)   | 2.00                    | 39                        |                         |                                          |                         |              |                         |              | 78.00   | 2.00         |  |      |            |
| Pond Site (Impervious) | 3.95                    | 100                       |                         |                                          |                         |              |                         |              | 395.00  | 3.95         |  |      |            |
|                        |                         |                           |                         |                                          |                         |              |                         |              | 0.00    | 0.00         |  |      |            |
|                        |                         |                           |                         |                                          |                         |              |                         |              | 0.00    | 0.00         |  |      |            |
|                        |                         |                           |                         |                                          |                         |              |                         |              | 0.00    | 0.00         |  |      |            |
|                        |                         |                           |                         |                                          |                         |              |                         |              | 0.00    | 0.00         |  |      |            |
| TOTALS                 | 20.09                   | † î                       | 0                       |                                          | 0                       |              | 0                       |              | 1775.53 | 20.09        |  |      |            |
|                        |                         |                           |                         | 14 I I I I I I I I I I I I I I I I I I I |                         |              | WEIGH                   | TED CN       |         | 88           |  |      |            |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 15.4 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

Estimated Runoff Volume = 25.81 ac-ft Peak Volume = A x Q

Pond Name: 22-1 Date: 2/28/2024

#### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C                |      | 14.14 ac<br>0.88 |                         |
|----------------------------------------------|------|------------------|-------------------------|
| Total Impervious                             | 0.95 | 12.73 ac         |                         |
| Total Pervious                               | 0.20 | 1.41 ac          |                         |
| Outstanding FL Water (Y/N)[multiply x 1.5]   |      | N                |                         |
| Required Treatment (Runoff from 1" Rainfall) |      | 1.03 ac-ft       | (whichever is greater)  |
| Required Treatment (1/2" over Area)          |      | 0.59 ac-ft ∫     | (willenever to Breater) |
|                                              |      | 1.03 ac-ft       |                         |

## 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 17.61 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 25.81 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 8.20 ac-ft  |
| Floodplain Compensation                         | 0.48 ac-ft  |
| TOTAL STORAGE                                   | 9.71 ac-ft  |

#### 3) Estimated Pond Configuration:

| L/W Ratio 2.0 Side Slopes (1:H)                              | 4.0      |
|--------------------------------------------------------------|----------|
| Maximum Treatment Volume Depth 1.5 ft Wet/Dry                | Dry      |
| Maximum Pond Depth Below Freeboard 6.0 ft Assumed Control EL | 82.00 ft |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 415 ft  |
|---------------|---------|
| WTOP OF SLOPE | 208 ft  |
| Area          | 1.98 ac |

| LSITE | 546 ft  |
|-------|---------|
| WSITE | 297 ft  |
| Area  | 3.73 ac |

| <u>Contour</u> | <u>Area</u> | <u>Storage</u>       | Cumulative                                                                                                            | <u>Notes</u>                                                                                                                       |
|----------------|-------------|----------------------|-----------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|
| 82             | 71393       | 0.0                  | 0.0                                                                                                                   | Soil 15                                                                                                                            |
| 88             | 99212       | 511815.0             | 511815.0                                                                                                              |                                                                                                                                    |
| 92             | 110150      | 418724.0             | 930539.0                                                                                                              |                                                                                                                                    |
|                |             | Cumulative I         | Ret (ac-ft) Belo                                                                                                      | w Freeboard                                                                                                                        |
|                |             |                      | 21.36                                                                                                                 |                                                                                                                                    |
|                |             |                      |                                                                                                                       |                                                                                                                                    |
|                |             |                      | Pond Area                                                                                                             |                                                                                                                                    |
|                |             |                      | 2.5                                                                                                                   | 6                                                                                                                                  |
|                | 82<br>88    | 82 71393<br>88 99212 | 82         71393         0.0           88         99212         511815.0           92         110150         418724.0 | 82 71393 0.0 0.0<br>88 99212 511815.0 511815.0<br>92 110150 418724.0 930539.0<br>Cumulative Ret (ac-ft) Belo<br>21.36<br>Pond Area |

602527 13.83212

## <u>Pond</u> <u>22-1</u> 0

## POND SIZING CALCULATIONS I-75 Pond Siting

# FPID: 452074-2-32-01

**Typical Section Width** Full Pond Name: 22-2 Date: 2/28/2024 **Basin Limits** 

## **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 14.14 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 5.80  | ас |
| Total Area        | 19.94 | ac |

| 0       | 45111 LIU | 111.5   |
|---------|-----------|---------|
| 1857+00 | to        | 1889+00 |

#### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA  |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|-------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UT A    | TOTAL ISLEN |
| Impvervious             | 6.46                    | 98  |                         |    |                         |    |                         |        | 633.54  | 6.46        |
|                         | 7.68                    | 39  |                         |    |                         |    |                         |        | 299.34  | 7.68        |
| Grass                   | 5.80                    | 39  |                         |    |                         |    |                         |        | 226.20  | 5.80        |
| Pond Site Pre Condition | 5.60                    | 22  |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         | + + |                         |    |                         |    |                         |        | 0.00    | 0.00        |
| TOTALS                  | 19.94                   |     | 0                       |    | 0                       |    | 0                       |        | 1159.07 | 19.94       |
| TOTALS                  | 10.04                   |     | · · ·                   |    |                         |    | WEIGH                   | TED CN |         | 58          |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 10.5 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

## POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 14.14 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 5.80 ft <sup>2</sup>  |
| Total Area        | 19.94 ft <sup>2</sup> |

| Potential Abstraction (S) = | 7.2 |
|-----------------------------|-----|
| S = (1000/CN) - 10          |     |
| Tatimated Runoff Volume -   | 175 |

Estimated Runoff Volume = 17.52 ac-ft Peak Volume = A x Q

**Basin Limits** 1857+00 1889+00 to

#### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SC               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UN A    | TOTAL PLAN |
| Impervious             | 12.73                   | 98  |                         |    |                         |    |                         |        | 1247.54 | 12.73      |
|                        | 1.41                    | 39  |                         |    |                         |    |                         |        | 54.99   | 1.41       |
| Grass                  | 2.00                    | 39  |                         |    |                         |    |                         |        | 78.00   | 2.00       |
| Pond Site (Pervious)   |                         |     |                         |    |                         |    |                         |        | 380.00  | 3.80       |
| Pond Site (Impervious) | 3.80                    | 100 |                         |    |                         |    |                         | +      | 0.00    | 0.00       |
|                        |                         | +   |                         |    |                         |    |                         | +      | 0.00    | 0.00       |
|                        |                         | +   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 19.94                   | ++  | 0                       |    | 0                       |    | 0                       |        | 1760.53 | 19.94      |
| TOTALS                 | 15.54                   |     |                         |    |                         |    | WEIGH                   | TED CN |         | 88         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.4 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

Estimated Runoff Volume = 25.60 ac-ft Peak Volume = A x Q

Pond Name: 22-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                  |                |      | 14.14 ac   |   |                        |
|----------------------------------|----------------|------|------------|---|------------------------|
| Weighted C                       |                |      | 0.88       |   |                        |
| Тс                               | tal Impervious | 0.95 | 12.73 ac   |   |                        |
|                                  | Total Pervious | 0.20 | 1.41 ac    |   |                        |
| Outstanding FL Water (Y/N)[multi | ply x 1.5]     |      | N          |   |                        |
| Required Treatment (Runoff from  | 1" Rainfall)   |      | 1.03 ac-ft | ٦ | (whichever is greater) |
| Required Treatment (1/2" over Ar | ea)            |      | 0.59 ac-ft | Ţ | (whichever is greater) |
|                                  |                |      | 1.03 ac-ft |   |                        |

#### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 17.52 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 25.60 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 8.08 ac-ft  |
| Floodplain Compensation                         | 0.48 ac-ft  |
| TOTAL STORAGE                                   | 9.59 ac-ft  |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 6.0 ft  | Assumed Control EL | 81.00 ft |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 413 ft  |
|---------------|---------|
| WTOP OF SLOPE | 206 ft  |
| Area          | 1.96 ac |

| LSITE | 543 ft  |
|-------|---------|
| WSITE | 296 ft  |
| Area  | 3.69 ac |

|     | Contour | Area   | Storage      | <u>Cumulative</u> | Notes       |
|-----|---------|--------|--------------|-------------------|-------------|
| GIS | 81      | 66081  | 0.0          | 0.0               | Soil 15     |
| GIS | 86      | 92942  | 397557.5     | 397557.5          |             |
| GIS | 90      | 110150 | 406184.0     | 803741.5          |             |
|     |         |        | Cumulative I | Ret (ac-ft) Below | w Freeboard |
|     |         |        |              | 18.45             |             |
|     |         |        |              |                   |             |
|     |         |        |              | Pond Area         |             |
|     |         |        |              | 2.5               | 6           |

I-75 Pond Siting

| FPID: 4 | 452074- | 2-32-01 |
|---------|---------|---------|
|---------|---------|---------|

| Pond Name: | 22-3      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 14.14 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 5.55  | ac |
| Total Area        | 19.69 | ас |

 Basin Limits

 1857+00
 to
 1889+00

#### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CITA    | TOTALANEA  |
| Impvervious             | 6.46                    | 98  |                         |    |                         |    |                         |        | 633.54  | 6.46       |
| Grass                   | 7.68                    | 39  |                         |    |                         |    |                         |        | 299.34  | 7.68       |
| Pond Site Pre Condition | 5.55                    | 39  |                         |    |                         |    |                         |        | 216.45  | 5.55       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 19.69                   |     | 0                       |    | 0                       |    | 0                       |        | 1149.32 | 19.69      |
|                         |                         | -   |                         |    |                         |    | WEIGH                   | TED CN |         | 58         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

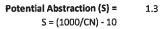
**Runoff Depth (Q) =** 10.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 14.14 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 5.55 ft <sup>2</sup>  |
| Total Area        | 19.69 ft <sup>2</sup> |

#### Potential Abstraction (S) = 7.1 S = (1000/CN) - 10

Estimated Runoff Volume = 17.38 ac-ft Peak Volume = A x Q


Basin Limits

#### **CURVE NUMBER CALCUATION:**

| LAND USE -             | TYPE A SC               | ILS | TYPE B SO               | TYPE B SOILS |                         | TYPE C SOILS |                         | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|--------------|-------------------------|--------------|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN     | UN'A    | TOTAL AREA |
| Impervious             | 12.73                   | 98  |                         |              |                         | I            |                         |        | 1247.54 | 12.73      |
| Grass                  | 1.41                    | 39  |                         |              |                         |              |                         |        | 54.99   | 1.41       |
| Pond Site (Pervious)   | 2.00                    | 39  |                         |              |                         |              |                         |        | 78.00   | 2.00       |
| Pond Site (Impervious) | 3.55                    | 100 |                         |              |                         |              |                         |        | 355.00  | 3.55       |
|                        |                         |     |                         |              | ļ                       |              |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
| TOTALS                 | 19.69                   | Î   | 0                       |              | 0                       |              | 0                       |        | 1735.53 | 19.69      |
|                        |                         | -   |                         |              |                         |              | WEIGH                   | TED CN |         | 88         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.4 in Q =  $(P - 0.2S)^2/(P + 0.8S)$



Estimated Runoff Volume = 25.25 ac-ft Peak Volume = A x Q

1857+00 to 1889+00

Pond Name: 22-3 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C                |      | 14.14 ac<br>0.88 |                        |
|----------------------------------------------|------|------------------|------------------------|
| -<br>Total Impervious                        | 0.95 | 12.73 ac         |                        |
| Total Pervious                               | 0.20 | 1.41 ac          |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]   |      | N                |                        |
| Required Treatment (Runoff from 1" Rainfall) |      | _ 1.03 ac-ft     | (whichever is greater) |
| Required Treatment (1/2" over Area)          |      | 0.59 ac-ft 🛛     | (whichever is Breater) |
|                                              |      | 1.03 ac-ft       |                        |

## 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 17.38 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 25.25 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 7.87 ac-ft  |
| Floodplain Compensation                         | 0.48 ac-ft  |
| TOTAL STORAGE                                   | 9.38 ac-ft  |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 6.0 ft  | Assumed Control EL | 80.00 ft |

## 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 409 ft  |
|---------------|---------|
| WTOP OF SLOPE | 204 ft  |
| Area          | 1.92 ac |

| LSITE | 538 ft  |
|-------|---------|
| WSITE | 293 ft  |
| Area  | 3.62 ac |

|     | Pond           | <u>22-3</u> | 0              |                  |             |              |          |
|-----|----------------|-------------|----------------|------------------|-------------|--------------|----------|
|     | Contour        | Area        | Storago        | Cumulative       |             | <u>Notes</u> |          |
|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | Cumulative       |             | NOLES        |          |
| GIS | 77             | 61940       | 0.0            | 0.0              | Soil 15     |              |          |
| GIS | 82             | 88543       | 376207.5       | 376207.5         |             |              |          |
| GIS | 86             | 113220      | 403526.0       | 779733.5         |             |              |          |
|     |                |             | Cumulative I   | Ret (ac-ft) Belo | w Freeboard |              |          |
|     |                |             |                | 17.90            |             |              |          |
|     |                |             |                |                  |             |              |          |
|     |                |             |                | Pond Area        |             |              |          |
|     |                |             |                | 2.6              |             |              | 602527   |
|     |                |             |                |                  |             |              | 13.83212 |

I-75 Pond Siting

#### FPID: 452074-2-32-01

| Pond Name: | 23-1      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.81 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 5.18  | ас |
| Total Area        | 18.99 | ac |

**Basin Limits** 1905+00 1889+00 to

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SOILS            |    | TYPE A SOILS TYPE B SOILS TYPE C SOILS |    | ILS                     | TYPE D SOILS |                         | CN*A   | TOTAL AREA |       |
|-------------------------|-------------------------|----|----------------------------------------|----|-------------------------|--------------|-------------------------|--------|------------|-------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> )                | CN | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN     |            |       |
| Impuopulous             | 3.23                    | 98 |                                        |    |                         |              |                         |        | 316.77     | 3.23  |
| Impvervious             |                         | 39 |                                        |    |                         |              |                         |        | 412.53     | 10.58 |
| Grass                   | 10.58                   |    |                                        |    |                         |              |                         |        | 202.02     | 5.18  |
| Pond Site Pre Condition | 5,18                    | 39 |                                        |    |                         | +            |                         |        | 0.00       | 0.00  |
|                         | _                       |    |                                        |    |                         |              |                         |        | 0.00       | 0.00  |
|                         |                         |    |                                        |    |                         |              |                         |        | 0.00       | 0.00  |
|                         |                         |    |                                        |    |                         |              |                         |        | 0.00       | 0.00  |
|                         |                         |    |                                        |    |                         |              |                         |        | 0.00       | 0.00  |
| TOTALS                  | 18.99                   |    | 0                                      |    | 0                       |              | 0                       |        | 931.32     | 18.99 |
| TUTALS                  | 10.99                   | 1  |                                        |    |                         |              | WEIGH                   | TED CN |            | 49    |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 8.7 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

## POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.81 | ft <sup>2</sup> |
|-------------------|-------|-----------------|
| Pond Parcel Area  | 5.18  | ft <sup>2</sup> |
| Total Area        | 18.99 | ft²             |

| Potential Abstraction (S) = | 10.4  |
|-----------------------------|-------|
| S = (1000/CN) - 10          |       |
|                             | 12 70 |

ac-ft 13.79 Estimated Runoff Volume = Peak Volume = A x Q

**Basin Limits** 1905+00 1889+00 to

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |                 | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|-----------------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) |     | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN              |         |            |
| Immendance             | 9.92                    | 98  |                         |    |                         |    |                         |                 | 971.90  | 9.92       |
| Impervious             |                         | 39  |                         |    |                         |    |                         |                 | 151.81  | 3.89       |
| Grass                  | 3.89                    |     |                         |    |                         |    |                         |                 | 78.00   | 2.00       |
| Pond Site (Pervious)   | 2.00                    | 39  |                         |    |                         |    |                         |                 | 318.00  | 3.18       |
| Pond Site (Impervious) | 3.18                    | 100 |                         |    |                         |    |                         | +               |         | 0.00       |
|                        |                         |     |                         |    |                         |    |                         | $ \rightarrow $ | 0.00    |            |
|                        |                         |     |                         |    |                         |    |                         |                 | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |                 | 0.00    | 0.00       |
|                        |                         | +   |                         |    | 1                       |    |                         |                 | 0.00    | 0.00       |
| TOTALS                 | 18.99                   |     | 0                       |    | 0                       |    | 0                       |                 | 1519.71 | 18.99      |
| TOTALS                 | 10.35                   |     |                         |    |                         | -  | WEIGH                   | TED CN          |         | 80         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.2 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 2.5 S = (1000/CN) - 10

Estimated Runoff Volume = 22.53 ac-ft Peak Volume = A x Q

Pond Name: 23-1 Date: 2/28/2024

## POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |         | 13.81 ac           |               |
|--------------------------------------------------|---------|--------------------|---------------|
| Weighted C                                       |         | 0.74               |               |
| Total Impervious                                 | 0.95    | 9.92 ac            |               |
| Total Pervious                                   | 0.20    | 3.89 ac            |               |
| Outstanding FL Water (Y/N)[multiply x 1.5]       | E.      | N                  |               |
| Required Treatment (Runoff from 1" Rainfall)     |         | 0.85 ac-ft 7       |               |
| Required Treatment (1/2" over Area)              |         | 0.58 ac-ft         | r is greater) |
|                                                  |         | 0.85 ac-ft         |               |
|                                                  |         |                    |               |
| 2) Estimated Peak Attenuation Volume (EPAV):     |         |                    |               |
| Existing Runoff Volume                           |         | 13.79 ac-ft        |               |
| Proposed Runoff Volume                           |         | 22.53 ac-ft        |               |
| EPAV = Proposed Runoff - Existing Runoff Volume  | È       | 8.74 ac-ft         |               |
| TOTAL                                            | STORAGE | 9.59 ac-ft         |               |
| 3) Estimated Pond Configuration:                 | TORAGE  | 5.55 80-11         |               |
| -,                                               |         |                    |               |
| Maintenance Berm Width                           | 20.0 ft | Freeboard          | 1.0 ft        |
| L/W Ratio                                        | 2.0     | Side Slopes (1:H)  | 4.0           |
| Maximum Treatment Volume Depth                   | 1.5 ft  | Wet/Dry            | Dry           |
| Maximum Pond Depth Below Freeboard               | 6.0 ft  | Assumed Control EL | ft            |
| Soil type #13 used for pond depth; refer to WSS  | data    |                    |               |
| 4) Estimated Pond Dimensions Including Freeboard |         |                    |               |
|                                                  |         |                    |               |
| LTOP OF SLOPE                                    | 413 ft  |                    |               |
| WTOP OF SLOPE                                    | 206 ft  |                    |               |
|                                                  |         |                    |               |
| Area                                             | 1.96 ac |                    |               |

| LSITE | 543 ft  |
|-------|---------|
| WSITE | 296 ft  |
| Area  | 3.69 ac |

|                   | Pond                             | <u>23-1</u>                             |                                                                    |                         |                                        |        |
|-------------------|----------------------------------|-----------------------------------------|--------------------------------------------------------------------|-------------------------|----------------------------------------|--------|
| GIS<br>GIS<br>GIS | <u>Contour</u><br>75<br>80<br>83 | <u>Area</u><br>61940<br>88543<br>134520 | <u>Storage</u><br>0.0<br>376207.5<br>334594.5<br><b>Cumulative</b> |                         | <u>Notes</u><br>Soil 15<br>v Freeboard |        |
|                   |                                  |                                         |                                                                    | <u>Pond Area</u><br>3.1 |                                        | 602527 |

I-75 Pond Siting

## FPID: 452074-2-32-01

| Pond Name: | 23-2      | Full | <b>Typical Section Width</b> |
|------------|-----------|------|------------------------------|
| Date:      | 2/28/2024 |      |                              |

### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.81 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 3.76  | ас |
| Total Area        | 17.57 | ас |

 Basin Limits

 1889+00
 to
 1905+00

#### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |      | TYPE D SO               | LS     | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|------|-------------------------|--------|--------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN     | CN A   | TOTAL AREA |
| Impvervious             | 3.23                    | 98  |                         |    | l                       |      |                         |        | 316.77 | 3.23       |
| Grass                   | 10.58                   | 39  |                         |    |                         |      |                         |        | 412.53 | 10.5       |
| Pond Site Pre Condition | 3.76                    | 39  |                         |    |                         |      |                         |        | 146.64 | 3.7        |
|                         |                         |     |                         |    |                         |      |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |      |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |      |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |      |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |      |                         |        | 0.00   | 0.0        |
| TOTALS                  | 17.57                   |     | 0                       |    | 0                       | i Ti | 0                       |        | 875.94 | 17.5       |
|                         |                         |     |                         |    |                         |      | WEIGH                   | TED CN |        | 5          |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 8.9 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.81 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 3.76 ft <sup>2</sup>  |
| Total Area        | 17.57 ft <sup>2</sup> |

#### Potential Abstraction (S) = 10.1 S = (1000/CN) - 10

Estimated Runoff Volume = 13.01 ac-ft Peak Volume = A x Q

## **Basin Limits**

1889+00 to 1905+00

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS            |                   | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-------------------|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN                | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UNIA    | TOTALAKEA  |
| Impervious             | 9.92                    | 98  |                         |                   |                         |    |                         |        | 971.90  | 9.9        |
| Grass                  | 3.89                    | 39  |                         |                   |                         |    |                         |        | 151.81  | 3.8        |
| Pond Site (Pervious)   | 1.50                    | 39  |                         |                   |                         |    |                         |        | 58.50   | 1.5        |
| Pond Site (Impervious) | 2.26                    | 100 |                         |                   |                         |    |                         |        | 226.00  | 2.2        |
|                        |                         |     |                         |                   |                         |    |                         |        | 0.00    | 0.0        |
|                        |                         |     |                         |                   |                         |    |                         |        | 0.00    | 0.0        |
|                        |                         |     |                         |                   |                         |    |                         |        | 0.00    | 0.0        |
|                        |                         |     |                         |                   |                         |    |                         |        | 0.00    | 0.0        |
| TOTALS                 | 17.57                   |     | 0                       |                   | 0                       |    | 0                       |        | 1408.21 | 17.5       |
|                        |                         |     |                         | the second second |                         |    | WEIGH                   | TED CN |         | 81         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 14.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.5 S = (1000/CN) - 10

Estimated Runoff Volume = 20.87 ac-ft Peak Volume = A x Q

Pond Name: 23-2 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area)              | 0.95<br>0.20                       | 13.81 ac<br>0.74<br>9.92 ac<br>3.89 ac<br>N<br>0.85 ac-ft<br>0.58 ac-ft<br>0.85 ac-ft<br>0.85 ac-ft | ever is greater)             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------|------------------------------|
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                                                                                                                          |                                    |                                                                                                     |                              |
| Existing Runoff Volume<br>Proposed Runoff Volume<br>EPAV = Proposed Runoff - Existing Runoff Volume                                                                                                                   | 1                                  | 13.01 ac-ft<br>20.87 ac-ft<br><b>7.86 ac-ft</b>                                                     |                              |
|                                                                                                                                                                                                                       | TORAGE                             | 8.71 ac-ft                                                                                          |                              |
| 3) Estimated Pond Configuration:                                                                                                                                                                                      |                                    |                                                                                                     |                              |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard<br>Soil type #13 used for pond depth; refer to WSS of<br>4) Estimated Pond Dimensions Including Freeboard | 20.0 ft<br>2.0<br>1.5 ft<br>6.0 ft | Freeboard<br>Side Slopes (1:H)<br>Wet/Dry<br>Assumed Control E                                      | 1.0 ft<br>4.0<br>Dry<br>L ft |
|                                                                                                                                                                                                                       | 395 ft                             |                                                                                                     |                              |
| LTOP OF SLOPE<br>WTOP OF SLOPE                                                                                                                                                                                        | 395 ft<br>197 ft                   |                                                                                                     |                              |
| Area                                                                                                                                                                                                                  | 1.79 ac                            |                                                                                                     |                              |
| 5) Minimum Site Dimensions (Considering Maintenance                                                                                                                                                                   | Berm and 20%                       | 6 Factor of Safety)                                                                                 |                              |

| LSITE | 522 ft  |
|-------|---------|
| WSITE | 285 ft  |
| Area  | 3.41 ac |

|     | <u>Contour</u> | <u>Area</u> | Storage Cumulative         | Notes        |
|-----|----------------|-------------|----------------------------|--------------|
| GIS | 76             | 45120       | 0.0 0.0                    | Soil 15      |
| GIS | 80             | 71340       | 232920.0 232920.0          |              |
| GIS | 83             | 116750      | 282135.0 515055.0          |              |
|     |                |             | Cumulative Ret (ac-ft) Bel | ow Freeboard |
|     |                |             | 11.82                      |              |
|     |                |             |                            |              |

Pond 23-2

| Pond Area |  |
|-----------|--|
| 2.7       |  |

I-75 Pond Siting

## FPID: 452074-2-32-01

| Pond Name: | 23-3      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

## PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.81 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 4.08  | ас |
| Total Area        | 17.89 | ac |

| Basin Limits |    |         |  |  |  |
|--------------|----|---------|--|--|--|
| 1889+00      | to | 1905+00 |  |  |  |

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS  | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|------|-------------------------|-----|-------------------------|----|-------------------------|--------|--------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CIT A  | 10111111   |
| Impvervious             | 3.23                    | 98   |                         | 1   |                         |    |                         |        | 316.77 | 3.23       |
|                         | 10.58                   | 39   |                         |     |                         |    |                         |        | 412.53 | 10.58      |
| Grass                   |                         | 39   |                         |     |                         |    |                         |        | 159.12 | 4.08       |
| Pond Site Pre Condition | 4.08                    | 39   |                         |     |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         | ┼──┤ |                         |     |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |      |                         |     |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |      |                         |     |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |      |                         | 1-1 |                         |    |                         |        | 0.00   | 0.00       |
| TOTALS                  | 17.89                   |      | 0                       |     | 0                       |    | 0                       |        | 888.42 | 17.89      |
| TOTALS                  | 17.05                   |      |                         |     |                         | åå | WEIGH                   | TED CN |        | 50         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### Potential Abstraction (S) = 10.1 S = (1000/CN) - 10

Estimated Runoff Volume = 13.19 Peak Volume = A x Q

**Runoff Depth (Q) =** 8.8 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

# POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.81 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 4.08 ft <sup>2</sup>  |
| Total Area        | 17.89 ft <sup>2</sup> |

| <b>Basin Limits</b> |    |        |  |  |  |
|---------------------|----|--------|--|--|--|
| 1889+00             | to | 1905+0 |  |  |  |

ac-ft

## CURVE NUMBER CALCUATION:

|                        | TYPE A SO               | ILS | TYPE B SO               | ILS      | TYPE C SO               | ILS | TYPE D SO               | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----------|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) |     | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN     | ULL R   |            |
| Impervious             | 9.92                    | 98  |                         |          |                         |     |                         |        | 971.90  | 9.92       |
|                        | 3.89                    | 39  |                         |          |                         |     | 1                       |        | 151.81  | 3.89       |
| Grass                  |                         | 39  |                         |          |                         | 1-1 |                         |        | 70.20   | 1.80       |
| Pond Site (Pervious)   | 1.80                    |     |                         |          |                         |     |                         |        | 228.00  | 2.28       |
| Pond Site (Impervious) | 2.28                    | 100 |                         |          |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         | <u> </u> |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         |          |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |          |                         |     |                         |        | 0.00    | 0.00       |
| TOTALS                 | 17.89                   |     | 0                       |          | 0                       |     | 0                       |        | 1421.91 | 17.89      |
| TUTACI                 | 17.05                   |     |                         |          |                         |     | WEIGH                   | TED CN |         | 79         |

**Potential Abstraction (S) =** S = (1000/CN) - 10

> Estimated Runoff Volume = 21.10 ac-ft Peak Volume = A x Q

2.6

| Rainfall Depth for 100yr-240hr (P) = | 16.9 | in |
|--------------------------------------|------|----|
| NOAA Atlas 14                        |      |    |

**Runoff Depth (Q) =** 14.2 in Q =  $(P - 0.2S)^2/(P + 0.8S)$ 

Pond Name: 23-3 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                                                    |         | 13.81 ac            |                 |  |  |
|------------------------------------------------------------------------------------|---------|---------------------|-----------------|--|--|
| Weighted C                                                                         |         | 0.74                |                 |  |  |
| Total Impervious                                                                   | 0.95    | 9.92 ac             |                 |  |  |
| Total Pervious                                                                     | 0.20    | 3.89 ac             |                 |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]                                         |         | N                   |                 |  |  |
| Required Treatment (Runoff from 1" Rainfall)                                       |         | 0.85 ac-ft ] (which | ver is greater) |  |  |
| Required Treatment (1/2" over Area)                                                |         | 0.58 ac-ft          | ver is greater) |  |  |
|                                                                                    |         | 0.85 ac-ft          |                 |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):                                       |         |                     |                 |  |  |
| Existing Runoff Volume                                                             |         | 13.19 ac-ft         |                 |  |  |
| Proposed Runoff Volume                                                             |         | 21.10 ac-ft         |                 |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volum                                     | e       | 7.91 ac-ft          |                 |  |  |
| TOTAL 3) Estimated Pond Configuration:                                             | STORAGE | 8.76 ac-ft          |                 |  |  |
| Maintenance Berm Width                                                             | 20.0 ft | Freeboard           | 1.0 ft          |  |  |
| L/W Ratio                                                                          | 2.0     | Side Slopes (1:H)   | 4.0             |  |  |
| Maximum Treatment Volume Depth                                                     | 1.5 ft  | Wet/Dry             | Dry             |  |  |
| Maximum Pond Depth Below Freeboard                                                 | 6.0 ft  | Assumed Control EL  | ft              |  |  |
| Soil type #13 used for pond depth; refer to WSS                                    | data    |                     |                 |  |  |
| 4) Estimated Pond Dimensions Including Freeboard                                   |         |                     |                 |  |  |
|                                                                                    |         |                     |                 |  |  |
| LTOP OF SLOPE                                                                      |         |                     |                 |  |  |
| WTOP OF SLOPE                                                                      |         |                     |                 |  |  |
| Area                                                                               | 1.80 ac |                     |                 |  |  |
| 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety) |         |                     |                 |  |  |

| LSITE | 523 ft  |
|-------|---------|
| WSITE | 286 ft  |
| Area  | 3.43 ac |

|            | Pond                 | <u>23-3</u>          |                                             |
|------------|----------------------|----------------------|---------------------------------------------|
| CIE        | <u>Contour</u><br>78 | <u>Area</u><br>55125 | Storage Cumulative Notes<br>0.0 0.0 Soil 15 |
| GIS<br>GIS | 78<br>82             | 78340                | 266930.0 266930.0                           |
| GIS        | 86                   | 111450               | 379580.0 646510.0                           |
|            |                      |                      | Cumulative Ret (ac-ft) Below Freeboard      |
|            |                      |                      | 14.84                                       |
|            |                      |                      |                                             |

| Pond Area |          |
|-----------|----------|
| 2.6       | 602527   |
|           | 13.83212 |

#### I-75 Pond Siting

## FPID: 452074-2-32-01

| Pond Name: | 24-1      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

## **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 14    | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 6.63  | ас |
| Total Area        | 20.63 | ас |

 Basin Limits

 1905+00
 to
 1925+00

#### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SO               | TYPE B SOILS |                         | TYPE C SOILS |                         | ILS    | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|--------------|-------------------------|--------------|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN     | UNA     | TOTAL AREA |
| Impvervious             | 4.04                    | 98  |                         |              |                         |              |                         |        | 395.96  | 4.04       |
| Grass                   | 9.96                    | 39  |                         |              |                         |              |                         |        | 388.42  | 9.96       |
| Pond Site Pre Condition | 6.63                    | 39  |                         |              |                         |              |                         |        | 258.57  | 6.63       |
|                         |                         |     |                         |              | ·2                      |              |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
| TOTALS                  | 20.63                   |     | 0                       |              | 0                       |              | 0                       |        | 1042.95 | 20.63      |
|                         |                         |     |                         |              |                         |              | WEIGH                   | TED CN |         | 5:         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 9.0 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

## POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 14    | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 6.63  | ас |
| Total Area        | 20.63 | ас |

#### Potential Abstraction (S) = 9.8 S = (1000/CN) - 10

Estimated Runoff Volume = 15.53 ac-ft Peak Volume = A x Q

 Basin Limits

 1905+00
 to
 1925+00

#### **CURVE NUMBER CALCUATION:**

| LAND USE -             | TYPE A SO               | )ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CATA    | TOTAL AREA |
| mpervious              | 12.40                   | 98   |                         |    |                         |    |                         |        | 1214.88 | 12.40      |
| Grass                  | 1.60                    | 39   |                         |    | ()                      |    |                         |        | 62.53   | 1.60       |
| Pond Site (Pervious)   | 5,13                    | 39   |                         |    |                         |    |                         |        | 200.07  | 5.13       |
| Pond Site (Impervious) | 1.50                    | 100  |                         |    |                         |    |                         |        | 150.00  | 1.50       |
|                        |                         |      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |      |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 20.63                   |      | 0                       |    | 0                       |    | 0                       |        | 1627.47 | 20.63      |
|                        |                         |      |                         | ·  |                         |    | WEIGH                   | TED CN |         | 79         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 14.1 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.7 S = (1000/CN) - 10

Estimated Runoff Volume = 24.18 ac-ft Peak Volume = A x Q

Pond Name: 24-1 Date: 2/28/2024

## POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| A standar DAM                                                                                                                                                                                             |                                                        | 14.00 ac                                                      |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------|---------------------------------------------------------------|--|
| Area Inside R/W                                                                                                                                                                                           |                                                        | 0.86                                                          |  |
| Weighted C<br>Total Impervious                                                                                                                                                                            | 0.95                                                   | 12.40 ac                                                      |  |
| Total Pervious                                                                                                                                                                                            | 0.30                                                   | 1.60 ac                                                       |  |
|                                                                                                                                                                                                           | 0.20                                                   | N                                                             |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]                                                                                                                                                                |                                                        | 1 01 ac ft 7                                                  |  |
| Required Treatment (Runoff from 1" Rainfall)                                                                                                                                                              |                                                        | 0.58 ac-ft                                                    |  |
| Required Treatment (1/2" over Area)                                                                                                                                                                       |                                                        | 1.01 ac-ft                                                    |  |
|                                                                                                                                                                                                           |                                                        |                                                               |  |
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                                                                                                              |                                                        |                                                               |  |
| Existing Runoff Volume                                                                                                                                                                                    |                                                        | 15.53 ac-ft                                                   |  |
| Proposed Runoff Volume                                                                                                                                                                                    |                                                        | 24.18 ac-ft                                                   |  |
| EPAV = Proposed Runoff - Existing Runoff Volume                                                                                                                                                           |                                                        | 8.65 ac-ft                                                    |  |
|                                                                                                                                                                                                           |                                                        |                                                               |  |
| TOTAL ST                                                                                                                                                                                                  | ORAGE                                                  | 9.66 ac-ft                                                    |  |
|                                                                                                                                                                                                           |                                                        |                                                               |  |
| 3) Estimated Pond Configuration:                                                                                                                                                                          |                                                        |                                                               |  |
|                                                                                                                                                                                                           | 20.0 ft                                                | Freeboard 1.0 ft                                              |  |
| Maintenance Berm Width                                                                                                                                                                                    | 20.0 ft<br>2.0                                         | Freeboard 1.0 ft<br>Side Slopes (1:H) 4.0                     |  |
| Maintenance Berm Width<br>L/W Ratio                                                                                                                                                                       |                                                        | Treeboard                                                     |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth                                                                                                                                     | 2.0                                                    | Side Slopes (1:H) 4.0                                         |  |
| Maintenance Berm Width<br>L/W Ratio                                                                                                                                                                       | 2.0<br>1.5 ft                                          | Side Slopes (1:H)4.0Wet/DryDry                                |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth                                                                                                                                     | 2.0<br>1.5 ft                                          | Side Slopes (1:H)4.0Wet/DryDry                                |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard                                                                                               | 2.0<br>1.5 ft                                          | Side Slopes (1:H) 4.0<br>Wet/Dry Dry                          |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard<br>4) Estimated Pond Dimensions Including Freeboard                                           | 2.0<br>1.5 ft<br>4.0 ft                                | Side Slopes (1:H) 4.0<br>Wet/Dry Dry                          |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard<br>4) Estimated Pond Dimensions Including Freeboard<br>LTOP OF SLOPE                          | 2.0<br>1.5 ft<br>4.0 ft<br>492 ft                      | Side Slopes (1:H) 4.0<br>Wet/Dry Dry                          |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard<br>4) Estimated Pond Dimensions Including Freeboard<br>LTOP OF SLOPE<br>WTOP OF SLOPE<br>Area | 2.0<br>1.5 ft<br>4.0 ft<br>492 ft<br>246 ft<br>2.78 ac | Side Slopes (1:H) 4.0<br>Wet/Dry Dry<br>Assumed Control EL ft |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard<br>4) Estimated Pond Dimensions Including Freeboard<br>LTOP OF SLOPE<br>WTOP OF SLOPE         | 2.0<br>1.5 ft<br>4.0 ft<br>492 ft<br>246 ft<br>2.78 ac | Side Slopes (1:H) 4.0<br>Wet/Dry Dry<br>Assumed Control EL ft |  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard<br>4) Estimated Pond Dimensions Including Freeboard<br>LTOP OF SLOPE<br>WTOP OF SLOPE<br>Area | 2.0<br>1.5 ft<br>4.0 ft<br>492 ft<br>246 ft<br>2.78 ac | Side Slopes (1:H) 4.0<br>Wet/Dry Dry<br>Assumed Control EL ft |  |

WSITE

Area

343 ft 5.03 ac

|     | <u>Contour</u> | Area   | Storage Cumulative Notes               |
|-----|----------------|--------|----------------------------------------|
| GIS | 76             | 42250  | 0.0 0.0 Soil 15                        |
| GIS | 81             | 86515  | 321912.5 321912.5                      |
| GIS | 86             | 118450 | 512412.5 834325.0                      |
|     |                |        | Cumulative Ret (ac-ft) Below Freeboard |
|     |                |        | 19.15                                  |

Pond 24-1

| Pond Area |        |
|-----------|--------|
| 2.7       | 602527 |

### POND SIZING CALCULATIONS I-75 Pond Siting

FPID: 452074-2-32-01

Pond Name: 24-2

**Typical Section Width** Full

Date: 2/28/2024

## PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 14    | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.24  | ас |
| Total Area        | 18.24 | ас |

**Basin Limits** 1905+00 1925+00 to

### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SOILS            |      | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A   | TOTAL AREA  |
|-------------------------|-------------------------|-----|-------------------------|------|-------------------------|----|-------------------------|--------|--------|-------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN   | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |        | TOTAL BILLS |
|                         | 4.04                    | 98  |                         |      |                         |    |                         |        | 395.96 | 4.04        |
| Impvervious             | 9.96                    | 39  |                         |      |                         |    |                         |        | 388.42 | 9.96        |
| Grass                   |                         |     |                         | ┼──┤ |                         |    |                         |        | 165.36 | 4.24        |
| Pond Site Pre Condition | 4.24                    | 39  |                         | + +  |                         |    |                         |        | 0.00   | 0.00        |
|                         |                         |     |                         |      |                         |    |                         |        | 0.00   | 0.00        |
|                         |                         |     |                         |      |                         |    |                         |        | 0.00   | 0.00        |
|                         |                         |     |                         |      |                         |    |                         |        | 0.00   | 0.00        |
|                         |                         |     |                         |      |                         |    |                         |        | 0.00   | 0.00        |
| TOTALS                  | 18.24                   |     | 0                       |      | 0                       |    | 0                       |        | 949.74 | 18.24       |
| TUTAG                   | 10.24                   | J   |                         | 1 1  |                         |    | WEIGH                   | TED CN |        | 52          |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 9.3 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 14    | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.24  | ас |
| Total Area        | 18.24 | ас |

#### S = (1000/CN) - 10 Estimated Runoff Volume = 14.21

Peak Volume = A x Q

Potential Abstraction (S) =

**Basin Limits** 1925+00 1905+00 to

9.2

ac-ft

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SO               | ILS | TYPE B SOILS            |     | TYPE C SOILS            |     | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN     |         |            |
| Immonitorie            | 12.40                   | 98  |                         | 1   |                         | T   |                         |        | 1214.88 | 12.40      |
| Impervious             |                         | ++  |                         |     |                         |     |                         |        | 62.53   | 1.60       |
| Grass                  | 1.60                    | 39  |                         |     |                         |     |                         | ++     | 33.15   | 0.85       |
| Pond Site (Pervious)   | 0.85                    | 39  |                         |     |                         | +   |                         | +      |         | 3.39       |
| Pond Site (Impervious) | 3.39                    | 100 |                         |     |                         |     |                         |        | 339.00  |            |
|                        |                         |     |                         |     |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         | + + |                         | 1 1 |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         | + + |                         |     |                         |        | 0.00    | 0.00       |
| TOTALS                 | 18.24                   | +   | 0                       |     | 0                       |     | 0                       |        | 1649.55 | 18.24      |
| TOTAL                  | 10121                   | 1   |                         |     |                         |     | WEIGH                   | TED CN |         | 90         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.7 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 1.1 S = (1000/CN) - 10

Estimated Runoff Volume = 23.85 ac-ft Peak Volume = A x Q

Pond Name: 24-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |               | 14.00 ac           |                |  |
|--------------------------------------------------|---------------|--------------------|----------------|--|
| Weighted C                                       |               | 0.86               |                |  |
| Total Impervious                                 | 0.95          | 12.40 ac           |                |  |
| Total Pervious                                   | 0.20          | 1.60 ac            |                |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |               | N                  |                |  |
| Required Treatment (Runoff from 1" Rainfall)     |               | 1.01 ac-ft         | er is greater) |  |
| Required Treatment (1/2" over Area)              |               | 0.58 ac-ft         | er is greater) |  |
|                                                  |               | 1.01 ac-ft         |                |  |
|                                                  |               |                    |                |  |
| 2) Estimated Peak Attenuation Volume (EPAV):     |               |                    |                |  |
| Existing Runoff Volume                           |               | 14.21 ac-ft        |                |  |
| Proposed Runoff Volume                           |               | 23.85 ac-ft        |                |  |
| EPAV = Proposed Runoff - Existing Runoff Volume  |               | 9.65 ac-ft         |                |  |
|                                                  |               |                    |                |  |
| TOTAL                                            | TOTAL STORAGE |                    |                |  |
| 3) Estimated Pond Configuration:                 |               |                    |                |  |
| Maintenance Berm Width                           | 20.0 ft       | Freeboard          | 1.0 ft         |  |
| L/W Ratio                                        | 2.0           | Side Slopes (1:H)  | 4.0            |  |
| Maximum Treatment Volume Depth                   | 1.5 ft        | Wet/Dry            | Dry            |  |
| Maximum Pond Depth Below Freeboard               | 4.0 ft        | Assumed Control EL | ft             |  |
|                                                  |               |                    |                |  |
| 4) Estimated Pond Dimensions Including Freeboard |               |                    |                |  |
|                                                  |               |                    |                |  |

| LTOP OF SLOPE | 516 ft  |
|---------------|---------|
| WTOP OF SLOPE | 258 ft  |
| Area          | 3.05 ac |

| LSITE | 667 ft  |
|-------|---------|
| WSITE | 357 ft  |
| Area  | 5.47 ac |

|     | Pond    | <u>24-2</u> |                |                   |             |      |
|-----|---------|-------------|----------------|-------------------|-------------|------|
|     | Contour | <u>Area</u> | <u>Storage</u> | Cumulative        | Notes       |      |
| GIS | 78      | 44125       | 0.0            | 0.0               | Soil 15     |      |
| GIS | 81      | 77515       | 182460.0       | 182460.0          |             |      |
| GIS | 85      | 109105      | 373240.0       | 555700.0          |             |      |
|     |         |             | Cumulative     | Ret (ac-ft) Below | / Freeboard |      |
|     |         |             |                | 12.76             |             |      |
|     |         |             |                | Pond Area         |             |      |
|     |         |             |                | 2.5               | e           | 5025 |
|     |         |             |                |                   |             |      |

#### I-75 Pond Siting

#### FPID: 452074-2-32-01

Pond Name: 24-3 Full **Typical Section Width** Date: 2/28/2024

#### **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 14    | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.93  | ас |
| Total Area        | 18.93 | ac |

**Basin Limits** 1905+00 to 1925+00

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|--------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UT A   | TOTAL AREA |
| Impvervious             | 4.04                    | 98  |                         |    |                         |    |                         |        | 395.96 | 4.0        |
| Grass                   | 9.96                    | 39  |                         |    |                         |    |                         |        | 388.42 | 9.9        |
| Pond Site Pre Condition | 4.93                    | 39  |                         |    |                         |    |                         |        | 192.27 | 4.9        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.0        |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.0        |
| TOTALS                  | 18.93                   |     | 0                       |    | 0                       |    | 0                       |        | 976.65 | 18.9       |
|                         |                         |     |                         | ·· |                         |    | WEIGH                   | TED CN |        | 5          |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 9.2 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 14    | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 4.93  | ас |
| Total Area        | 18.93 | ас |

| Potential Abstraction (S) = | 9.4 |
|-----------------------------|-----|
| S = (1000/CN) - 10          |     |

Estimated Runoff Volume = 14.59 ac-ft Peak Volume = A x Q

> **Basin Limits** 1905+00 1925+00 to

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS TYPE       |                                          | TYPE 8 SO               | TYPE B SOILS TYPE C SOILS |                         | ILS | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|------------------------------------------|-------------------------|---------------------------|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN                                       | AREA (ft <sup>2</sup> ) | CN                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN     | UN A    | TOTAL AREA |
| Impervious             | 12.40                   | 98                                       |                         |                           |                         |     |                         |        | 1214.88 | 12.40      |
| Grass                  | 1.60                    | 39                                       |                         |                           |                         |     |                         |        | 62.53   | 1.60       |
| Pond Site (Pervious)   | 3.43                    | 39                                       |                         |                           |                         |     |                         |        | 133.77  | 3.43       |
| Pond Site (Impervious) | 1.50                    | 100                                      |                         |                           |                         |     |                         |        | 150.00  | 1.50       |
|                        |                         |                                          |                         |                           |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |                                          |                         |                           |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |                                          |                         |                           |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |                                          |                         |                           |                         |     |                         |        | 0.00    | 0.00       |
| TOTALS                 | 18.93                   |                                          | 0                       |                           | 0                       | 1 1 | 0                       |        | 1561.17 | 18.93      |
|                        |                         | an a |                         |                           |                         | A11 | WEIGH                   | TED CN |         | 83         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.6 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 2.1 S = (1000/CN) - 10

Estimated Runoff Volume = 23.02 ac-ft Peak Volume = A x Q

Pond Name: 24-3 Date: 2/28/2024

#### POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area) | 0.95<br>0.20              | 14.00 ac<br>0.86<br>12.40 ac<br>1.60 ac<br>N<br>1.01 ac-ft<br>0.58 ac-ft<br><b>1.01 ac-ft</b> | ater)                      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------|-----------------------------------------------------------------------------------------------|----------------------------|
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                                                                                                             |                           |                                                                                               |                            |
| Existing Runoff Volume<br>Proposed Runoff Volume<br>EPAV = Proposed Runoff - Existing Runoff Volume                                                                                                      | 2                         | 14.59 ac-ft<br>23.02 ac-ft<br><b>8.43 ac-ft</b>                                               |                            |
| TOTAL :<br>3) Estimated Pond Configuration:                                                                                                                                                              | STORAGE                   | 9.44 ac-ft                                                                                    |                            |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard                                                                                              | 20.0<br>2.0<br>1.5<br>4.0 | Side Slopes (1:H)<br>ft Wet/Dry                                                               | 1.0 ft<br>4.0<br>Dry<br>ft |
| 4) Estimated Pond Dimensions Including Freeboard                                                                                                                                                         |                           |                                                                                               |                            |
| LTOP OF SLOPE<br>WTOP OF SLOPE<br>Area<br>5) Minimum Site Dimensions (Considering Maintenance                                                                                                            | 243<br>2.72               | ft<br>ac                                                                                      |                            |
| S) Minimum Site Dimensions (Considering Maintenance                                                                                                                                                      |                           |                                                                                               |                            |

WSITE

Area

340 ft 4.93 ac

|     | Pond           | <u>24-3</u> |              |                  |             |
|-----|----------------|-------------|--------------|------------------|-------------|
|     | <u>Contour</u> | Area        | Storage      | Cumulative       | Notes       |
| GIS | 79             | 65125       | 0.0          | 0.0              | Soil 15     |
| GIS | 84             | 92250       | 393437.5     | 393437.5         |             |
| GIS | 87             | 123450      | 323550.0     | 716987.5         |             |
|     |                |             | Cumulative I | Ret (ac-ft) Belo | w Freeboard |
|     |                |             |              | 16.46            |             |
|     |                |             |              |                  |             |

#### Pond Area 2.8

I-75 Pond Siting

#### FPID: 452074-2-32-01



#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 26.66 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 5.74  | ас |
| Total Area        | 32.4  | ас |

Basin Limits 1925+00 to 1963+60

#### CURVE NUMBER CALCUATION:

|                         | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | un A    |            |
| Immunicut               | 7.80                    | 98  |                         |    |                         |    |                         |        | 764.20  | 7.80       |
| Impvervious             | 18.86                   | 39  |                         |    |                         |    |                         |        | 735.62  | 18.86      |
| Grass                   |                         |     |                         |    |                         |    |                         |        | 223.86  | 5.74       |
| Pond Site Pre Condition | 5.74                    | 39  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         | +  |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | + + |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | +   |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 32.4                    |     | 0                       |    | 0                       |    | 0                       | Î      | 1723.68 | 32.4       |
| TUTALS                  | 52.7                    |     |                         |    |                         |    | WEIGH                   | TED CN |         | 53         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 9.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

#### Potential Abstraction (S) = 8.8 S = (1000/CN) - 10

Estimated Runoff Volume = 25.86 Peak Volume = A x Q

ac-ft

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 26.66 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 5.74  | ас |
| Total Area        | 32.4  | ас |

| Basin Limits |    |         |  |  |  |  |  |
|--------------|----|---------|--|--|--|--|--|
| 1925+00      | to | 1963+60 |  |  |  |  |  |

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | ar A    | TOTALTURE  |
| Impervious             | 23.93                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |    |                         |    |                         |        | 2344.71 | 23.93      |
|                        | 2.73                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |    |                         |    |                         |        | 106.64  | 2.73       |
| Grass                  |                         | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |    |                         |    |                         |        | 48.36   | 1.24       |
| Pond Site (Pervious)   | 1.24                    | and the second days in the secon |                         |    |                         |    |                         |        | 450.00  | 4.50       |
| Pond Site (Impervious) | 4.50                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |    |                         |    |                         | ++     | 0.00    | 0.00       |
|                        |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |    |                         |    |                         | +      | 0.00    | 0.00       |
|                        |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 32.4                    | +-+                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0                       |    | 0                       |    | 0                       |        | 2949.71 | 32.4       |
| TUIALS                 | 52.4                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |    |                         | -  | WEIGH                   | TED CN |         | 91         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.8 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.0 S = (1000/CN) - 10

Estimated Runoff Volume = 42.59 ac-ft Peak Volume = A x Q

#### Pond Name: 25-1/26-1 Date: 2/28/2024

#### POND SIZING ESTIMATION

2)

3)

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|         | Area Inside R/W                         |             |         | 26.66 ac     |              |                |
|---------|-----------------------------------------|-------------|---------|--------------|--------------|----------------|
|         | Weighted C                              |             |         | 0.87         |              |                |
|         | Total In                                | pervious    | 0.95    | 23.93 ac     |              |                |
|         | Total                                   | Pervious    | 0.20    | 2.73 ac      |              |                |
|         | Outstanding FL Water (Y/N)[multiply x 3 | 1.5]        |         | N            |              |                |
|         | Required Treatment (Runoff from 1" Ra   | infall)     |         | ן 1.94 ac-ft |              |                |
|         | Required Treatment (1/2" over Area)     |             |         | 1.11 ac-ft   | - (whichev   | er is greater) |
|         |                                         |             |         | 1.94 ac-ft   |              |                |
| ) Estir | nated Peak Attenuation Volume (EPAV):   |             |         |              |              |                |
|         | Existing Runoff Volume                  |             |         | 25.86 ac-ft  |              |                |
|         | Proposed Runoff Volume                  |             |         | 42.59 ac-ft  |              |                |
|         | EPAV = Proposed Runoff - Existing Runo  | off Volume  |         | 16.73 ac-ft  |              |                |
|         | Floodp                                  | lain Comper | nsation | 1.79 ac-ft   |              |                |
|         |                                         | TOTAL ST    | ORAGE   | 18.52 ac-ft  |              |                |
| ) Estir | nated Pond Configuration:               |             |         |              |              |                |
|         | Maintenance Berm Width                  |             | 20.0 ft | Freeboa      | rd           | 1.0 ft         |
|         | L/W Ratio                               |             | 2.0     | Side Slop    | oes (1:H)    | 4.0            |
|         | Maximum Treatment Volume Depth          |             | 1.5 ft  | Wet/Dry      | /            | Dry            |
|         | Maximum Pond Depth Below Freeboard      | d 📔         | 7.0 ft  | Assume       | d Control EL | 77.00 ft       |
|         |                                         |             |         |              |              |                |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 526 ft  |
|---------------|---------|
| WTOP OF SLOPE | 263 ft  |
| Area          | 3.18 ac |

| LSITE | 679 ft  |
|-------|---------|
| WSITE | 364 ft  |
| Area  | 5.67 ac |

#### Pond 25-1/26-1 0

|                                        | Contour   | <u>Area</u> | <b>Storage</b> | Cumulative |  |         | <u>Notes</u> |  |  |
|----------------------------------------|-----------|-------------|----------------|------------|--|---------|--------------|--|--|
| GIS                                    | 71        | 96311       | 0.0            | 0.0        |  | Soil 15 |              |  |  |
| GIS                                    | 76        | 136316      | 581567.5       | 581567.5   |  |         |              |  |  |
| GIS                                    | 80        | 151225      | 575082.0       | 1156649.5  |  |         |              |  |  |
| Cumulative Ret (ac-ft) Below Freeboard |           |             |                |            |  |         |              |  |  |
|                                        |           |             |                | 26.55      |  |         |              |  |  |
|                                        |           |             |                |            |  |         |              |  |  |
|                                        | Pond Area |             |                |            |  |         |              |  |  |

3.5

I-75 Pond Siting

#### FPID: 452074-2-32-01

| Pond Name: | 25-1      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 10.92 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 3.50  | ac |
| Total Area        | 14.42 | ас |

Basin Limits 1925+00 to 1940+00

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS | TYPE B SO               | LS  | TYPE C SO               | ILS | TYPE D SO               | ILS    | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|--------|--------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN     | UN A   |            |
| Impvervious             | 3.03                    | 98  |                         |     |                         |     |                         |        | 296.97 | 3.03       |
| Grass                   | 7.89                    | 39  |                         |     |                         |     |                         |        | 307.70 | 7.89       |
| Pond Site Pre Condition | 3.50                    | 39  |                         |     |                         |     |                         |        | 136.50 | 3.50       |
|                         |                         |     |                         |     |                         |     |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |     |                         |     |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         | Î 🗌 |                         |     |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |     |                         |     |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |     |                         |     |                         |        | 0.00   | 0.00       |
| TOTALS                  | 14.42                   |     | 0                       |     | 0                       |     | 0                       |        | 741.17 | 14.42      |
|                         |                         |     |                         |     |                         |     | WEIGH                   | TED CN |        | 51         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 9.2 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 10.92 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 3.50  | ас |
| Total Area        | 14.42 | ас |

#### Potential Abstraction (S) = 9.5 S = (1000/CN) - 10

Estimated Runoff Volume = 11.06 ac-ft Peak Volume = A x Q

Basin Limits

1925+00 to 1940+00

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |          | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|----------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UT A    | IOTALARIA  |
| Impervious             | 9.30                    | 98       |                         |    |                         |    |                         |        | 911.16  | 9.30       |
| Grass                  | 1.62                    | 39       |                         |    |                         |    |                         |        | 63.28   | 1.62       |
| Pond Site (Pervious)   | 1.50                    | 39       |                         |    |                         |    |                         |        | 58.50   | 1.50       |
| Pond Site (Impervious) | 2.00                    | 100      |                         |    |                         |    |                         |        | 200.00  | 2.00       |
|                        |                         |          |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |          |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |          |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |          |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 14.42                   |          | 0                       |    | 0                       | ſ  | 0                       |        | 1232.93 | 14.42      |
|                        |                         | at a sta |                         |    |                         |    | WEIGH                   | TED CN |         | 86         |

Potential Abstraction (S) = 1.7 S = (1000/CN) - 10

Estimated Runoff Volume = 18.05 ac-ft Peak Volume = A x Q

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.0 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Pond Name: 25-1 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                              |      | 10.92 ac                 |                        |
|----------------------------------------------|------|--------------------------|------------------------|
| Weighted C                                   |      | 0.84                     |                        |
| Total Impervious                             | 0.95 | 9.30 ac                  |                        |
| Total Pervious                               | 0.20 | 1.62 ac                  |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]   |      | N                        |                        |
| Required Treatment (Runoff from 1" Rainfall) |      | 0.76 ac-ft<br>0.46 ac-ft | (whichever is greater) |
| Required Treatment (1/2" over Area)          |      | 0.46 ac-ft 🕇             | (whichever is Breater) |
|                                              |      | 0.76 ac-ft               |                        |

#### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 11.06 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 18.05 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 6.99 ac-ft  |
| Floodplain Compensation                         | 1.79 ac-ft  |
| TOTAL STORAGE                                   | 9.54 ac-ft  |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 7.0 ft  | Assumed Control EL | 75.00 ft |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 388 ft  |
|---------------|---------|
| WTOP OF SLOPE | 194 ft  |
| Area          | 1.72 ac |

| LSITE | 513 ft  |
|-------|---------|
| WSITE | 281 ft  |
| Area  | 3.31 ac |

|            | Pond                       | <u>25-1</u>                   | 0                                 |                                      |                         |
|------------|----------------------------|-------------------------------|-----------------------------------|--------------------------------------|-------------------------|
| GIS<br>GIS | <u>Contour</u><br>75<br>82 | <u>Area</u><br>48851<br>75286 | <u>Storage</u><br>0.0<br>434479.5 | <u>Cumulative</u><br>0.0<br>434479.5 | <u>Notes</u><br>Soil 15 |

Cumulative Ret (ac-ft) Below Freeboard 9.97

> Pond Area 1.7

#### I-75 Pond Siting

# FPID: 452074-2-32-01 Pond Name: 25-2 Date: 2/28/2024

Full Typical Section Width

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 10.92 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 3.50  | ас |
| Total Area        | 14.42 | ас |

Basin Limits 1925+00 to 1940+00

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS | TYPE B SO               | ILS | TYPE C SOILS            |     | TYPE D SOILS            |        | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|-----|-------------------------|--------|--------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN     |        |            |
| Impuoprique             | 3.03                    | 98  |                         |     |                         | † T |                         |        | 296.97 | 3.03       |
| Impvervious             | 7.89                    | 39  |                         |     |                         |     |                         |        | 307.70 | 7.89       |
| Grass                   | 3.50                    | 39  |                         | +   |                         |     |                         |        | 136.50 | 3.50       |
| Pond Site Pre Condition | 5.50                    | 23  |                         |     |                         |     |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |     |                         |     |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |     |                         |     |                         |        | 0.00   | 0.00       |
|                         |                         | + + |                         |     | 1                       |     |                         |        | 0.00   | 0.00       |
|                         |                         | +   |                         |     |                         |     |                         |        | 0.00   | 0.00       |
| TOTALS                  | 14.42                   |     | 0                       |     | 0                       |     | 0                       |        | 741.17 | 14.42      |
| TUTALS                  | 14.42                   |     |                         |     |                         | de- | WEIGH                   | TED CN |        | 51         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 9.2 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 10.92 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 3.50  | ас |
| Total Area        | 14.42 | ac |

| Estimated Runoff Volume = | 11.06 |
|---------------------------|-------|
| Peak Volume = A x Q       |       |

S = (1000/CN) - 10

Potential Abstraction (S) =

Peak Volume = A x Q

Basin Limits
1925+00 to 1940+00

9.5

ac-ft

#### CURVE NUMBER CALCUATION:

| LAND USE               | TYPE A SO               | ILS | TYPE B SOILS            |          | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----------|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CITA    |            |
| Impervious             | 9.30                    | 98  |                         | 1 I      |                         |    |                         |        | 911.16  | 9.30       |
|                        | 1.62                    | 39  |                         |          |                         |    |                         |        | 63.28   | 1.62       |
| Grass                  | 1.50                    | 39  |                         | +1       |                         |    |                         |        | 58.50   | 1.50       |
| Pond Site (Pervious)   | 2.00                    | 100 |                         |          |                         |    |                         |        | 200.00  | 2.00       |
| Pond Site (Impervious) | 2,00                    | 100 |                         |          |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         |          |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         | + +      |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         |          |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 14.42                   | +-+ | 0                       | + +      | 0                       |    | 0                       |        | 1232.93 | 14.42      |
| TUTALS                 | 14.42                   |     | Ŭ                       | <u> </u> |                         |    | WEIGH                   | TED CN |         | 86         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.0 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.7 S = (1000/CN) - 10

Estimated Runoff Volume = 18.05 ac-ft Peak Volume = A x Q

Pond Name: 25-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                              |      | 10.92 ac     |                        |
|----------------------------------------------|------|--------------|------------------------|
| Weighted C                                   |      | 0.84         |                        |
| Total Impervious                             | 0.95 | 9.30 ac      |                        |
| Total Pervious                               | 0.20 | 1.62 ac      |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]   | 17   | N            |                        |
| Required Treatment (Runoff from 1" Rainfall) |      | 0.76 ac-ft ر | (whichever is greater) |
| Required Treatment (1/2" over Area)          |      | 0.46 ac-ft 🕇 | (whichever is greater) |
|                                              |      | 0.76 ac-ft   |                        |

#### 2) Estimated Peak Attenuation Volume (EPAV):

| Existing Runoff Volume                          | 11.06 ac-ft |
|-------------------------------------------------|-------------|
| Proposed Runoff Volume                          | 18.05 ac-ft |
| EPAV = Proposed Runoff - Existing Runoff Volume | 6.99 ac-ft  |
| Floodplain Compensation                         | 1.79 ac-ft  |
| TOTAL STORAGE                                   | 9.54 ac-ft  |

#### 3) Estimated Pond Configuration:

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 7.0 ft  | Assumed Control EL | 77.00 ft |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 388 ft  |
|---------------|---------|
| WTOP OF SLOPE | 194 ft  |
| Area          | 1.72 ac |

| LSITE | 513 ft  |
|-------|---------|
| WSITE | 281 ft  |
| Area  | 3.31 ac |

## <u>Pond 25-2</u>0

|     | Contour | <u>Area</u> | <u>Storage</u> | <b>Cumulative</b> | Notes   |
|-----|---------|-------------|----------------|-------------------|---------|
| GIS | 77      | 49711       | 0.0            | 0.0               | Soil 15 |
| GIS | 84      | 77128       | 443936.5       | 443936.5          |         |

## Cumulative Ret (ac-ft) Below Freeboard

10.19

Pond Area 1.8

I-75 Pond Siting

#### FPID: 452074-2-32-01

| Pond Name: | 25-3      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

#### **PRE-DEVELOPMENT RUNOFF PARAMETERS**

| Total Area        | 14.42 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 3.50  | ac |
| Onsite Basin Area | 10.92 | ас |

**Basin Limits** 1925+00 1940+00 to

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|--------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UNA    | TOTAL ANEA |
| Impvervious             | 3.03                    | 98  |                         |    |                         |    |                         |        | 296.97 | 3.03       |
| Grass                   | 7.89                    | 39  |                         |    |                         |    |                         |        | 307.70 | 7.89       |
| Pond Site Pre Condition | 3.50                    | 39  |                         |    |                         |    |                         |        | 136.50 | 3.50       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |     |                         |    |                         |    |                         |        | 0.00   | 0.00       |
| TOTALS                  | 14.42                   | 1   | 0                       | 1  | 0                       |    | 0                       | T      | 741.17 | 14.42      |
|                         |                         |     |                         |    |                         |    | WEIGH                   | TED CN |        | 51         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 9.2 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 10.92 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 3,50  | ас |
| Total Area        | 14.42 | ас |

| Potential Abstraction (S) = | 9.5 |
|-----------------------------|-----|
| S = (1000/CN) - 10          |     |

Estimated Runoff Volume = 11.06 ac-ft Peak Volume = A x Q

> **Basin Limits** 1940+00 1925+00 to

#### **CURVE NUMBER CALCUATION:** TYPE B SOILS TYPE C SOILS TYPE D SOILS TYPE A SOILS LAND USE AREA (ft<sup>2</sup>) AREA (ft<sup>2</sup>) CN AREA (ft<sup>2</sup>) CN AREA (ft<sup>2</sup>) CN CN 98 9.30 Impervious 39 Grass 1.62 1.50 39 Pond Site (Pervious) Pond Site (Impervious)

| 1.02  |              |                     | 1                   |                     |                 |             |             |                 |
|-------|--------------|---------------------|---------------------|---------------------|-----------------|-------------|-------------|-----------------|
| 1.50  | 39           |                     |                     |                     |                 |             | 58.50       | 1.50            |
| 2.00  | 100          |                     |                     |                     |                 |             | 200.00      | 2.00            |
|       |              |                     |                     |                     |                 |             | 0.00        | 0.00            |
|       |              |                     |                     |                     |                 |             | 0.00        | 0.00            |
|       |              |                     |                     |                     |                 |             | 0.00        | 0.00            |
|       |              |                     |                     |                     | 1 1             |             | 0.00        | 0.00            |
| 14.42 |              | 0                   |                     | 0                   | 0               | 1           | 232.93      | 14.42           |
|       |              |                     |                     |                     | WEIGH           | TED CN      |             | 86              |
|       | 1.50<br>2.00 | 1.50 39<br>2.00 100 | 1.50 39<br>2.00 100 | 1.50 39<br>2.00 100 | 1.50         39 | 1.50     39 | 1.50     39 | 1.50         39 |

Potential Abstraction (S) = 1.7 S = (1000/CN) - 10

Estimated Runoff Volume = 18.05 ac-ft Peak Volume = A x Q

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.0 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

CN\*A

911.16

63.28

TOTAL AREA

9.30

Pond Name: 25-3 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C<br>Total Impervious<br>Total Pervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area) | 0.95<br>0.20 | 10.92 ac<br>0.84<br>9.30 ac<br>1.62 ac<br>0.76 ac-ft<br>0.46 ac-ft<br>0.76 ac-ft | - (whichever is greater) |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|----------------------------------------------------------------------------------|--------------------------|
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                                                                                                             |              |                                                                                  |                          |

# Existing Runoff Volume11.06 ac-ftProposed Runoff Volume18.05 ac-ftEPAV = Proposed Runoff - Existing Runoff Volume6.99 ac-ftFloodplain Compensation1.79 ac-ftTOTAL STORAGE9.54 ac-ft

#### 3) Estimated Pond Configuration:

÷

| Maintenance Berm Width             | 20.0 ft | Freeboard          | 1.0 ft   |
|------------------------------------|---------|--------------------|----------|
| L/W Ratio                          | 2.0     | Side Slopes (1:H)  | 4.0      |
| Maximum Treatment Volume Depth     | 1.5 ft  | Wet/Dry            | Dry      |
| Maximum Pond Depth Below Freeboard | 7.0 ft  | Assumed Control EL | 77.00 ft |
|                                    |         |                    |          |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 388 ft  |
|---------------|---------|
| WTOP OF SLOPE | 194 ft  |
| Area          | 1.72 ac |

| LSITE | 513 ft  |
|-------|---------|
| WSITE | 281 ft  |
| Area  | 3.31 ac |

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | <b>Cumulative</b> | <u>Notes</u> |
|-----|----------------|-------------|----------------|-------------------|--------------|
| GIS | 75             | 47572       | 0.0            | 0.0               | Soil 15      |
| GIS | 82             | 77535       | 437874.5       | 437874.5          |              |
|     |                |             |                |                   |              |

Pond 25-3

0

Cumulative Ret (ac-ft) Below Freeboard 10.05

Pond Area 1.8

602527 13.83212

٠

#### POND SIZING CALCULATIONS I-75 Pond Siting

#### FPID: 452074-2-32-01

| Pond Name: 25-1/26-1 | Full | Typical Section Width |
|----------------------|------|-----------------------|
| Date: 5/25/2023      |      |                       |

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 26.66 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 7.50  | ас |
| Total Area        | 34.16 | ас |

**Basin Limits** 1101+00 1139+70 to

#### **CURVE NUMBER CALCUATION:**

| I                       | TYPE A SO               | ILS | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CIV A   | TOTALIST   |
| Impvervious             | 7.82                    | 98  |                         |     |                         |    |                         |        | 766.18  | 7.82       |
|                         | 18.84                   | 39  |                         |     |                         |    |                         |        | 734.83  | 18.84      |
| Grass                   |                         | 39  |                         | +   |                         |    |                         |        | 292.50  | 7.50       |
| Pond Site Pre Condition | 7.50                    | 39  |                         | + + |                         |    |                         | 1      | 0.00    | 0.00       |
|                         |                         | + + |                         |     |                         |    |                         | 1      | 0.00    | 0.00       |
|                         |                         | + + |                         | ++  |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | +   |                         |     |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 34.16                   |     | 0                       |     | 0                       |    | 0                       |        | 1793.51 | 34.16      |
| TOTALS                  | 54.10                   |     |                         |     |                         |    | WEIGH                   | TED CN |         | 53         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### Runoff Depth (Q) = 9.4 in $Q = (P - 0.2S)^2/(P + 0.8S)$

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 26.66 ac |  |
|-------------------|----------|--|
| Pond Parcel Area  | 7.50 ac  |  |
| Total Area        | 34.16 ac |  |

#### Estimated Runoff Volume = 26.86 Peak Volume = A x Q

S = (1000/CN) - 10

9.0

ac-ft

Potential Abstraction (S) =

| Pond Parcel Area | 7.50 ac  |
|------------------|----------|
| Total Area       | 34.16 ac |

#### **Basin Limits** 1139+70 1101+00 to

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SC               | ILS | TYPE B SOILS            |     | TYPE C SOILS            |                  | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-----|-------------------------|------------------|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN               | AREA (ft <sup>2</sup> ) | CN     | at n    |            |
| lucing and lower       | 23.99                   | 98  |                         |     |                         |                  |                         |        | 2350.79 | 23.99      |
| Impervious             | 2.67                    | 39  |                         |     |                         |                  |                         |        | 104.22  | 2.67       |
| Grass                  |                         |     |                         | + + |                         |                  |                         |        | 117.00  | 3.00       |
| Pond Site (Pervious)   | 3.00                    | 39  |                         |     |                         |                  |                         | 1-1-   | 450.00  | 4.50       |
| Pond Site (Impervious) | 4.50                    | 100 |                         |     |                         | $\left  \right $ |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |                  |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |                  |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |     |                         |                  |                         |        | 0.00    | 0.00       |
| TOTALS                 | 34.16                   |     | 0                       |     | 0                       |                  | 0                       |        | 3022.01 | 34.16      |
| TOTAD                  | 54.10                   |     |                         |     |                         | 1                | WEIGH                   | TED CN |         | 88         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.4 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

ac-ft Estimated Runoff Volume = 43.92 Peak Volume = A x Q

#### Pond Name: 25-1/26-1 Date: 5/25/2023

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |           | 26.66 ac       |                         |
|--------------------------------------------------|-----------|----------------|-------------------------|
| Weighted C                                       |           | 0.87           |                         |
| Total Impervious                                 | 0.95      | 23.99 ac       |                         |
| Total Pervious                                   | 0.20      | 2.67 ac        |                         |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |           | N              |                         |
| Required Treatment (Runoff from 1" Rainfall)     |           | 1.94 ac-ft     | vhichever is greater)   |
| Required Treatment (1/2" over Area)              |           | 1.11 ac-ft 🖵 💔 | vilicitevel is greater) |
|                                                  |           | 1.94 ac-ft     |                         |
| 2) Estimated Peak Attenuation Volume (EPAV):     |           |                |                         |
| Existing Runoff Volume                           |           | 26.86 ac-ft    |                         |
| Proposed Runoff Volume                           |           | 43.92 ac-ft    |                         |
| EPAV = Proposed Runoff - Existing Runoff Volum   | e         | 17.07 ac-ft    |                         |
| Floodplain Com                                   | pensation | 1.79 ac-ft     |                         |
| TOTAL                                            | STORAGE   | 18.86 ac-ft    |                         |
| 3) Estimated Pond Configuration:                 |           |                |                         |
| Maintenance Berm Width                           | 20.0 ft   | Freeboard      | 1.0 ft                  |
| L/W Ratio                                        | 2.0       | Side Slopes (1 | :H) 4.0                 |
| Maximum Treatment Volume Depth                   | 1.5 ft    | Wet/Dry        | Dry                     |
| Maximum Pond Depth Below Freeboard               | 7.0 ft    | Assumed Cont   | trol EL 77.00 ft        |
| A) Estimated Pond Dimensions Including Freehoard |           |                |                         |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 530 ft  |
|---------------|---------|
| WTOP OF SLOPE | 265 ft  |
| Area          | 3.23 ac |

| LSITE | 684 ft  |
|-------|---------|
| WSITE | 366 ft  |
| Area  | 5.75 ac |

#### Pond 25-1/26-1 0

|     | Contour | <u>Area</u> | <u>Storage</u> | <b>Cumulative</b> | Notes   |
|-----|---------|-------------|----------------|-------------------|---------|
| GIS | 69      | 96311       | 0.0            | 0.0               | Soil 15 |
| GIS | 76      | 136316      | 814194.5       | 814194.5          |         |

Cumulative Ret (ac-ft) Below Freeboard 18.69

> Pond Area 3.1



#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 15.74 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 4.50  | ас |
| Total Area        | 20.24 | ac |

Basin Limits 1940+80 to 1963+60

#### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE B SO               | TYPE B SOILS |                         | TYPE C SOILS |                         | ILS    | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|--------------|-------------------------|--------------|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN     | CIVIA   | TOTAL AREA |
| Impvervious             | 4.61                    | 98  |                         |              |                         |              |                         |        | 451.39  | 4.6        |
| Grass                   | 11.13                   | 39  |                         |              |                         |              |                         |        | 434.22  | 11.13      |
| Pond Site Pre Condition | 4.50                    | 39  |                         |              |                         |              |                         |        | 175.50  | 4.50       |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                         |                         |     | 1                       |              |                         |              |                         |        | 0.00    | 0.0        |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.0        |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.0        |
|                         |                         |     |                         |              |                         |              |                         |        | 0.00    | 0.0        |
| TOTALS                  | 20.24                   |     | 0                       |              | 0                       | Î            | 0                       |        | 1061.12 | 20.24      |
|                         |                         | -   |                         | ð            |                         |              | WEIGH                   | TED CN |         | 53         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### **Runoff Depth (Q) =** 9.4 in $Q = (P - 0.2S)^2/(P + 0.8S)$

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 15.74 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.50  | ас |
| Total Area        | 20.24 | ac |

| Estimated Runoff Volume = | 15.89 |
|---------------------------|-------|
| Peak Volume = A x Q       |       |

S = (1000/CN) - 10

Potential Abstraction (S) =

Basin Limits

9.1

ac-ft

#### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SO               | TYPE A SOILS |                         | TYPE B SOILS |                         | TYPE C SOILS |                         | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|--------------|-------------------------|--------------|-------------------------|--------------|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN     | UN*A    | TOTAL AREA |
| Impervious             | 14.13                   | 98           |                         |              |                         |              |                         |        | 1384.96 | 14.13      |
| Grass                  | 1.61                    | 39           |                         |              |                         |              |                         |        | 62.70   | 1.6:       |
| Pond Site (Pervious)   | 2.00                    | 39           |                         |              |                         |              |                         |        | 78.00   | 2.00       |
| Pond Site (Impervious) | 2.50                    | 100          |                         |              |                         |              |                         |        | 250.00  | 2.50       |
|                        |                         |              |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         | $\square$    |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         |              |                         |              |                         |              |                         |        | 0.00    | 0.00       |
|                        |                         |              |                         |              |                         |              |                         |        | 0.00    | 0.00       |
| TOTALS                 | 20.24                   |              | 0                       |              | 0                       |              | 0                       |        | 1775.66 | 20.24      |
|                        |                         |              |                         |              |                         |              | WEIGH                   | TED CN |         | 88         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.4 S = (1000/CN) - 10

Estimated Runoff Volume = 25.86 ac-ft Peak Volume = A x Q

Pond Name: 26-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |               | 15.74 ac     |            |               |
|-------------------------------------------------|---------------|--------------|------------|---------------|
| Weighted C                                      |               | 0.87         |            |               |
| Total Impervious                                | 0.95          | 14.13 ac     |            |               |
| Total Pervious                                  | 0.20          | 1.61 ac      |            |               |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |               | N            |            |               |
| Required Treatment (Runoff from 1" Rainfall)    |               | 1.15 ac-ft ጊ | (whicheve  | r is greater) |
| Required Treatment (1/2" over Area)             |               | 0.66 ac-ft 🗍 | (          |               |
|                                                 |               | 1.15 ac-ft   |            |               |
|                                                 |               |              |            |               |
| 2) Estimated Peak Attenuation Volume (EPAV):    |               |              |            |               |
|                                                 |               |              |            |               |
| Existing Runoff Volume                          |               | 15.89 ac-ft  |            |               |
| Proposed Runoff Volume                          |               | 25.86 ac-ft  |            |               |
| EPAV = Proposed Runoff - Existing Runoff Volume | e             | 9.97 ac-ft   |            |               |
|                                                 |               |              |            |               |
| Floodplain Comp                                 | pensation     | 0.00 ac-ft   |            |               |
|                                                 |               |              |            |               |
|                                                 | STORAGE       | 9.97 ac-ft   |            |               |
| 3) Estimated Pond Configuration:                |               |              |            |               |
|                                                 | 20.0 ft       | Freeboar     | d          | 1.0 ft        |
| Maintenance Berm Width                          | 20.0 1        | Side Slop    |            | 4.0           |
| L/W Ratio                                       | 2.0<br>1.5 ft | Wet/Dry      | C3 (1117)  | Dry           |
| Maximum Treatment Volume Depth                  |               |              | Control EL | 79.00 ft      |
| Maximum Pond Depth Below Freeboard              | 5.0 ft        | Assumed      | CONTIOLER  | 100010        |

#### 4) Estimated Pond Dimensions Including Freeboard

Maximum Pond Depth Below Freeboard

| LTOP OF SLOPE | 453 ft  |
|---------------|---------|
| WTOP OF SLOPE | 227 ft  |
| Area          | 2.36 ac |

## 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 592 ft  |
|-------|---------|
| WSITE | 320 ft  |
| Area  | 4.35 ac |

|            | Pond                       | <u>26-2</u>                    | 0                                 |                                      |                         |
|------------|----------------------------|--------------------------------|-----------------------------------|--------------------------------------|-------------------------|
| GIS<br>GIS | <u>Contour</u><br>69<br>76 | <u>Area</u><br>96311<br>136316 | <u>Storage</u><br>0.0<br>814194.5 | <u>Cumulative</u><br>0.0<br>814194.5 | <u>Notes</u><br>Soil 15 |

Cumulative Ret (ac-ft) Below Freeboard

18.69

Pond Area 3.1

•

#### I-75 Pond Siting

#### FPID: 452074-2-32-01

| Pond Name: | 26-3      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 15.74 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 4.50  | ас |
| Total Area        | 20.24 | ас |

Basin Limits 1940+80 to 1963+60

#### CURVE NUMBER CALCUATION:

| LAND USE                | TYPE A SO               | ILS | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         | TOTALITE   |
| Immunique               | 4.61                    | 98  |                         | 1 1 |                         |    |                         |        | 451.39  | 4.61       |
| Impvervious             | 11.13                   | 39  |                         |     |                         |    |                         |        | 434.22  | 11.13      |
| Grass                   |                         | 39  |                         |     |                         |    |                         |        | 175.50  | 4.50       |
| Pond Site Pre Condition | 4.50                    | 39  |                         |     |                         |    |                         | ++     | 0.00    | 0.00       |
|                         |                         | + + |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | + + |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | + + |                         | ++  |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | ++  |                         |     |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 20.24                   | +   | 0                       |     | 0                       |    | 0                       | 1 1    | 1061.12 | 20.24      |
| TOTALS                  | 20.24                   |     |                         |     |                         |    | WEIGH                   | TED CN |         | 52         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### **Runoff Depth (Q) =** 9.4 in $Q = (P - 0.2S)^2/(P + 0.8S)$

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 15.74 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.50  | ас |
| Total Area        | 20.24 | ас |

#### Estimated Runoff Volume = 15.89 Peak Volume = A x Q

S = (1000/CN) - 10

Potential Abstraction (S) =

Basin Limits

to 1963+60

9.1

ac-ft

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |                  | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|------------------|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) |     | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN               | AREA (ft <sup>2</sup> ) | CN     |         |            |
| magnious               | 14.13                   | 98  |                         |    |                         |                  |                         | T      | 1384.96 | 14.13      |
| mpervious              | 1.61                    | 39  |                         |    |                         |                  |                         |        | 62.70   | 1.61       |
| Grass                  |                         |     |                         |    |                         |                  |                         |        | 78.00   | 2.00       |
| Pond Site (Pervious)   | 2.00                    | 39  |                         | +  |                         |                  |                         |        | 250.00  | 2.50       |
| Pond Site (Impervious) | 2.50                    | 100 |                         |    |                         | $ \rightarrow $  |                         | ++     | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         | $\left  \right $ |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |    |                         |                  |                         |        | 0.00    | 0.00       |
|                        |                         | +   |                         |    |                         |                  |                         |        | 0.00    | 0.00       |
| TOTALS                 | 20,24                   |     | 0                       |    | 0                       |                  | 0                       |        | 1775.66 | 20.24      |
| TOTALS                 | 2012 1                  |     | and the second second   | A  |                         | <u>*</u> *       | WEIGH                   | TED CN |         | 88         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q)** = 15.3 in Q =  $(P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.4 S = (1000/CN) - 10

Estimated Runoff Volume = 25.86 ac-ft

Peak Volume = A x Q

Pond Name: 26-3 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|         | Area Inside R/W               |                       |         | 15.74 ac     |                    |          |
|---------|-------------------------------|-----------------------|---------|--------------|--------------------|----------|
|         | Weighted C                    |                       |         | 0.87         |                    |          |
|         |                               | Total Impervious      | 0.95    | 14.13 ac     |                    |          |
|         |                               | <b>Total Pervious</b> | 0.20    | 1.61 ac      |                    |          |
|         | Outstanding FL Water (Y/N)[m  | ultiply x 1.5]        |         | N            |                    |          |
|         | Required Treatment (Runoff fr | rom 1" Rainfall)      |         | ן 1.15 ac-ft | • (whichever is gr | astar)   |
|         | Required Treatment (1/2" ove  | r Area)               |         | 0.66 ac-ft 亅 | - (whichever is gr | eater    |
|         |                               |                       |         | 1.15 ac-ft   |                    |          |
|         |                               |                       |         |              |                    |          |
| 2) Esti | mated Peak Attenuation Volum  | e (EPAV):             |         |              |                    |          |
|         |                               |                       |         |              |                    |          |
|         | Existing Runoff Volume        |                       |         | 15.89 ac-ft  |                    |          |
|         | Proposed Runoff Volume        |                       |         | 25.86 ac-ft  |                    |          |
|         | EPAV = Proposed Runoff - Exis | ting Runoff Volume    |         | 9.97 ac-ft   |                    |          |
|         |                               |                       |         |              |                    |          |
|         |                               | Floodplain Compe      | nsation | 0.00 ac-ft   |                    |          |
|         |                               |                       |         |              |                    |          |
|         |                               | TOTAL ST              | ORAGE   | 9.97 ac-ft   |                    |          |
| 3) Esti | mated Pond Configuration:     |                       |         |              |                    |          |
|         |                               |                       |         |              |                    |          |
|         | Maintenance Berm Width        |                       | 20.0 ft | Freeboar     | rd 🛛               | 1.0 ft   |
|         | L/W Ratio                     |                       | 2.0     | Side Slop    | bes (1:H)          | 4.0      |
|         | Maximum Treatment Volume      | Depth                 | 1.5 ft  | Wet/Dry      |                    | Dry      |
|         | Maximum Pond Depth Below      | Freeboard             | 5.0 ft  | Assumed      | d Control EL       | 79.00 ft |
|         |                               |                       |         |              |                    |          |
|         |                               |                       |         |              |                    |          |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 453 ft  |
|---------------|---------|
| WTOP OF SLOPE | 227 ft  |
| Area          | 2.36 ac |

| LSITE | 592 ft  |
|-------|---------|
| WSITE | 320 ft  |
| Area  | 4.35 ac |

| GIS<br>GIS | <u>Contour</u><br>69<br>76 | <u>Area</u><br>96311<br>136316 | <u>Storage</u><br>0.0<br>814194.5 | <u>Cumulative</u><br>0.0<br>814194.5 | <u>Notes</u><br>Soil 15 |
|------------|----------------------------|--------------------------------|-----------------------------------|--------------------------------------|-------------------------|
|------------|----------------------------|--------------------------------|-----------------------------------|--------------------------------------|-------------------------|

Pond 26-3

0

Cumulative Ret (ac-ft) Below Freeboard 18.69

> Pond Area 3.1

#### POND SIZING CALCULATIONS I-75 Pond Siting

FPID: 452074-2-32-01 Pond Name: 27-1 Full **Typical Section Width** Date: 2/28/2024

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13,88 | ac |
|-------------------|-------|----|
| Pond Parcel Area  | 8.21  | ас |
| Total Area        | 22.09 | ac |

**Basin Limits** 1993+00 1963+60 to

#### **CURVE NUMBER CALCUATION:**

| LAND USE                | TYPE A SO               | ILS | TYPE & SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
|                         | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CN A    | TOTAL AREA |
| Impvervious             | 5.94                    | 98  |                         |     |                         |    |                         |        | 582.06  | 5.9        |
| Grass                   | 7.94                    | 39  | 1                       |     |                         |    | 1                       |        | 309.68  | 7.9        |
| Pond Site Pre Condition | 8.21                    | 39  |                         |     |                         |    |                         |        | 320.19  | 8.2        |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.0        |
|                         |                         |     | 1                       |     |                         |    |                         |        | 0.00    | 0.0        |
|                         |                         | 1   |                         |     |                         |    |                         |        | 0.00    | 0.0        |
|                         |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.0        |
|                         |                         |     | 1                       |     |                         |    |                         |        | 0.00    | 0.0        |
| TOTALS                  | 22.09                   | Î   | 0                       | 1 1 | 0                       |    | 0                       |        | 1211.93 | 22.0       |
|                         |                         |     |                         | 3   |                         |    | WEIGH                   | TED CN |         | 5.         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 9.9 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 13.88 ac |  |
|-------------------|----------|--|
| Pond Parcel Area  | 8.21 ac  |  |
| Total Area        | 22.09 ac |  |

| Basin Limits |  |
|--------------|--|

to

1963+60

Potential Abstraction (S) =

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | ULA I   | TOTALARDA  |
| Impervious             | 12.55                   | 98  |                         |    |                         |    |                         |        | 1229.90 | 12.5       |
| Grass                  | 1.33                    | 39  |                         |    |                         |    |                         |        | 51.87   | 1.3        |
| Pond Site (Pervious)   | 4.21                    | 39  |                         |    |                         |    |                         |        | 164.19  | 4.2        |
| Pond Site (Impervious) | 4.00                    | 100 |                         |    |                         |    |                         |        | 400.00  | 4.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.0        |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.0        |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.0        |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.0        |
| TOTALS                 | 22.09                   |     | 0                       |    | 0                       |    | 0                       |        | 1845.96 | 22.0       |
|                        |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 84         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 14.7 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 2.0 S = (1000/CN) - 10

Estimated Runoff Volume = 27.15 ac-ft Peak Volume = A x Q

S = (1000/CN) - 10 Estimated Runoff Volume =

Peak Volume = A x Q

8.2

18.24

1993+00

ac-ft

Pond Name: 27-1 Date: 2/28/2024

#### POND SIZING ESTIMATION

## 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C                  |           | 13.88 ac<br>0.88 |            |             |
|------------------------------------------------|-----------|------------------|------------|-------------|
| Total Impervious                               | 0.95      | 12.55 ac         |            |             |
| Total Pervious                                 | 0.20      | 1.33 ac          |            |             |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |           | N                |            |             |
| Required Treatment (Runoff from 1" Rainfall)   |           | 1.02 ac-ft       | (whichever | is greater) |
| Required Treatment (1/2" over Area)            |           | 0.58 ac-ft       | (          |             |
|                                                |           | 1.02 ac-ft       |            |             |
| 2) Estimated Peak Attenuation Volume (EPAV):   |           |                  |            |             |
| Existing Runoff Volume                         |           | 18.24 ac-ft      |            |             |
| Proposed Runoff Volume                         |           | 27.15 ac-ft      |            |             |
| EPAV = Proposed Runoff - Existing Runoff Volum | e         | 8.91 ac-ft       |            |             |
|                                                |           |                  |            |             |
| Floodplain Com                                 | pensation | 1.71 ac-ft       |            |             |
|                                                | STORAGE   | 10.62 ac-ft      |            |             |
| 3) Estimated Pond Configuration:               |           |                  |            |             |
| Maintenance Berm Width                         | 20.0 ft   | Freeboard        |            | 1.0 ft      |
| L/W Ratio                                      | 2.0       | Side Slopes      | ; (1:H)    | 4.0         |
| Maximum Treatment Volume Depth                 | 1.5 ft    | Wet/Dry          |            | Dry         |
| Maximum Pond Depth Below Freeboard             | 4.0 ft    | Assumed C        | ontrol EL  | 66.00 ft    |
|                                                |           |                  |            |             |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 515 ft  |
|---------------|---------|
| WTOP OF SLOPE | 257 ft  |
| Area          | 3.04 ac |

| LSITE | 666 ft  |
|-------|---------|
| WSITE | 357 ft  |
| Area  | 5.45 ac |

|     | <u>Contour</u> | <u>Area</u> | <u>Storage</u> | <u>Cumulative</u> | Notes     |
|-----|----------------|-------------|----------------|-------------------|-----------|
| GIS | 70             | 42150       | 0.0            | 0.0               | Soil 15   |
| GIS | 75             | 87650       | 324500.0       | 324500.0          |           |
| GIS | 78             | 132450      | 330150.0       | 654650.0          |           |
|     |                |             | Cumulative I   | Ret (ac-ft) Below | Freeboard |
|     |                |             |                | 15.03             |           |
|     |                |             |                |                   |           |

Pond 27-1

#### Pond Area 3.0

#### I-75 Pond Siting

#### FPID: 452074-2-32-01

| Pond Name: | 27-2      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.88 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 10.62 | ac |
| Total Area        | 24.5  | ас |

 Basin Limits

 1963+60
 to
 1993+00

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS              | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|------------------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN               | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CIT A   |            |
|                         | 5.94                    | 98               |                         |    |                         |    |                         |        | 582.06  | 5.94       |
| Impvervious             |                         | 39               |                         |    |                         |    |                         |        | 309.68  | 7.94       |
| Grass                   | 7.94                    |                  |                         |    |                         |    |                         |        | 414.18  | 10.62      |
| Pond Site Pre Condition | 10.62                   | 39               |                         |    |                         |    |                         | + +    | 0.00    | 0.00       |
|                         |                         | $\left  \right $ |                         |    |                         |    |                         | ++     | 0.00    | 0.00       |
|                         |                         |                  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                  |                         | +  |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 24.5                    |                  | 0                       |    | 0                       |    | 0                       | 1 1    | 1305.92 | 24.5       |
| TOTALS                  | 24.5                    |                  |                         |    |                         |    | WEIGH                   | TED CN |         | 53         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### **Runoff Depth (Q) =** 9.6 in Q = $(P - 0.2S)^2/(P + 0.8S)$

## POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 13.88 ac |
|-------------------|----------|
| Pond Parcel Area  | 10.62 ac |
| Total Area        | 24.5 ac  |

| Estimated Runoff Volume = | 19.59 |
|---------------------------|-------|
| Peak Volume = A x Q       |       |

S = (1000/CN) - 10

8.8

ac-ft

Potential Abstraction (S) =

Basin Limits 1963+60 to 1993+00

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SC               | ILS | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CN'A    | TOTALTAL   |
| Impervious             | 12.55                   | 98  |                         |    |                         |    |                         |        | 1229.90 | 12.55      |
|                        | 1.33                    | 39  |                         |    |                         |    |                         |        | 51.87   | 1.33       |
| Grass                  | 6.62                    | 39  |                         |    |                         |    |                         |        | 258.18  | 6.62       |
| Pond Site (Pervious)   |                         |     |                         |    |                         |    |                         |        | 400.00  | 4.00       |
| Pond Site (Impervious) | 4.00                    | 100 | _                       |    |                         | +  |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +-+ |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 24.5                    | +   | 0                       |    | 0                       |    | 0                       |        | 1939.95 | 24.5       |
| TOTALS                 | 2113                    |     |                         |    |                         |    | WEIGH                   | TED CN |         | 79         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 14.1 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.6 S = (1000/CN) - 10

Estimated Runoff Volume = 28.81 ac-ft Peak Volume = A x Q

Pond Name: 27-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |          | 13.88 ac<br>0.88 |                        |
|-------------------------------------------------|----------|------------------|------------------------|
| Weighted C                                      | 0.05     |                  |                        |
| Total Impervious                                | 0.95     | 12.55 ac         |                        |
| Total Pervious                                  | 0.20     | 1.33 ac          |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |          | N                |                        |
| Required Treatment (Runoff from 1" Rainfall)    |          | 1.02 ac-ft _     | (whichever is greater) |
| Required Treatment (1/2" over Area)             |          | 0.58 ac-ft 」     | (                      |
|                                                 |          | 1.02 ac-ft       |                        |
|                                                 |          |                  |                        |
| 2) Estimated Peak Attenuation Volume (EPAV):    |          |                  |                        |
|                                                 |          |                  |                        |
| Existing Runoff Volume                          |          | 19.59 ac-ft      |                        |
| Proposed Runoff Volume                          |          | 28.81 ac-ft      |                        |
| EPAV = Proposed Runoff - Existing Runoff Volume | 2        | 9.21 ac-ft       |                        |
|                                                 |          |                  |                        |
| Floodplain Comp                                 | ensation | 1.71 ac-ft       |                        |
|                                                 |          |                  |                        |
| TOTALS                                          | TORAGE   | 10.92 ac-ft      |                        |
| 3) Estimated Pond Configuration:                |          |                  |                        |
| Maintenance Berm Width                          | 20.0 ft  | Freeboard        | 1.0 ft                 |
| L/W Ratio                                       | 2.0      | Side Slope       | s (1:H) 4.0            |
| Maximum Treatment Volume Depth                  | 1.5 ft   | Wet/Dry          | Dry                    |
| Maximum Pond Depth Below Freeboard              | 4.0 ft   | Assumed          | Control EL 66.00 ft    |
|                                                 |          |                  |                        |
|                                                 |          |                  |                        |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 522 ft  |
|---------------|---------|
| WTOP OF SLOPE | 261 ft  |
| Area          | 3.12 ac |

| LSITE | 674 ft  |
|-------|---------|
| WSITE | 361 ft  |
| Area  | 5.59 ac |

| GIS<br>GIS<br>GIS | <u>Contour</u><br>73<br>78<br>81 | <u>Area</u><br>64520<br>93250<br>151230 | Storage         Cumulative         Notes           0.0         0.0         Soil 15           394425.0         394425.0           366720.0         761145.0           Cumulative Ret (ac-ft) Below Freeboard |
|-------------------|----------------------------------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   |                                  |                                         | Cumulative Ret (ac-ft) Below Freeboard                                                                                                                                                                      |
|                   |                                  |                                         | 17.47                                                                                                                                                                                                       |

Pond

<u>27-2</u>

# Pond Area 3.5 60 12.0 12.0

#### I-75 Pond Siting

#### FPID: 452074-2-32-01

|                            | Po             | ond Name:                                      | 27-3                                                        |                                                    |                                                                       | Full                                                                  | Typic                                                                           | al Section Wi                                                                                                                                                                                       | idth                                                                                                                                                                                                      |
|----------------------------|----------------|------------------------------------------------|-------------------------------------------------------------|----------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|---------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                            |                | Date:                                          | 2/28/                                                       | 2024                                               |                                                                       |                                                                       |                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                           |
| NOFF PAI                   | RAME           | TERS                                           |                                                             |                                                    |                                                                       |                                                                       |                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                           |
| 13.88                      | ас             |                                                |                                                             |                                                    |                                                                       | В                                                                     | asin Lin                                                                        | nits                                                                                                                                                                                                |                                                                                                                                                                                                           |
| 8.46                       | ас             |                                                |                                                             |                                                    |                                                                       | 1963+60                                                               | to                                                                              | 1993+00                                                                                                                                                                                             |                                                                                                                                                                                                           |
| 22.34                      | ас             |                                                |                                                             |                                                    |                                                                       |                                                                       |                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                           |
| HON:                       |                |                                                |                                                             |                                                    |                                                                       |                                                                       |                                                                                 |                                                                                                                                                                                                     |                                                                                                                                                                                                           |
| TYPE A SOI                 |                | TYPE B SO                                      |                                                             | TYPE C SO                                          |                                                                       | TYPE D SO                                                             | _                                                                               | CN*A                                                                                                                                                                                                | TOTAL AREA                                                                                                                                                                                                |
| AREA (ft <sup>2</sup> )    | CN             | TYPE B SO<br>AREA (ft <sup>2</sup> )           | CN                                                          | TYPE C SO<br>AREA (ft <sup>2</sup> )               | ILS<br>CN                                                             | TYPE D SO<br>AREA (ft <sup>2</sup> )                                  | LS<br>CN                                                                        |                                                                                                                                                                                                     |                                                                                                                                                                                                           |
| AREA (ft²)<br>5.94         | см<br>98       |                                                |                                                             |                                                    |                                                                       |                                                                       | _                                                                               | 582.06                                                                                                                                                                                              | 5.9                                                                                                                                                                                                       |
| AREA (ft²)<br>5.94<br>7.94 | CN<br>98<br>39 |                                                |                                                             |                                                    |                                                                       |                                                                       | _                                                                               | 582.06<br>309.68                                                                                                                                                                                    | 5.9<br>7.9                                                                                                                                                                                                |
| AREA (ft²)<br>5.94         | см<br>98       |                                                |                                                             |                                                    |                                                                       |                                                                       | _                                                                               | 582.06                                                                                                                                                                                              | 5.9<br>7.9<br>8.4                                                                                                                                                                                         |
| AREA (ft²)<br>5.94<br>7.94 | CN<br>98<br>39 |                                                |                                                             |                                                    |                                                                       |                                                                       | _                                                                               | 582.06<br>309.68<br>329.94                                                                                                                                                                          | 5.9<br>7.9<br>8.4<br>0.0                                                                                                                                                                                  |
| AREA (ft²)<br>5.94<br>7.94 | CN<br>98<br>39 |                                                |                                                             |                                                    |                                                                       |                                                                       | _                                                                               | 582.06<br>309.68<br>329.94<br>0.00                                                                                                                                                                  | 5.9<br>7.9<br>8.4<br>0.0<br>0.0                                                                                                                                                                           |
| AREA (ft²)<br>5.94<br>7.94 | CN<br>98<br>39 |                                                |                                                             |                                                    |                                                                       |                                                                       | _                                                                               | 582.06<br>309.68<br>329.94<br>0.00<br>0.00                                                                                                                                                          | 5.9<br>7.9<br>8.4<br>0.0<br>0.0<br>0.0                                                                                                                                                                    |
| AREA (ft²)<br>5.94<br>7.94 | CN<br>98<br>39 |                                                |                                                             |                                                    |                                                                       |                                                                       | _                                                                               | 582.06<br>309.68<br>329.94<br>0.00<br>0.00<br>0.00                                                                                                                                                  | TOTAL AREA<br>5.9<br>7.9<br>8.4<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0                                                                                                                          |
|                            | 13.88<br>8.46  | NOFF PARAME<br>13.88 ac<br>8.46 ac<br>22.34 ac | Date:<br>NOFF PARAMETERS<br>13.88 ac<br>8.46 ac<br>22.34 ac | NOFF PARAMETERS<br>13.88 ac<br>8.46 ac<br>22.34 ac | Date: 2/28/2024<br>NOFF PARAMETERS<br>13.88 ac<br>8.46 ac<br>22.34 ac | Date: 2/28/2024<br>NOFF PARAMETERS<br>13.88 ac<br>8.46 ac<br>22.34 ac | Date: 2/28/2024<br>NOFF PARAMETERS<br>13:88 ac B<br>8.46 ac 1963+60<br>22:34 ac | Date:         2/28/2024           NOFF PARAMETERS         Basin Lin           13.88 ac         Basin Lin           8.46 ac         1963+60         to           22.34 ac         1963+60         to | Date:         2/28/2024           NOFF PARAMETERS         Basin Limits           13:88 ac         Basin Limits           8.46 ac         1963+60 to 1993+00           22.34 ac         1963+60 to 1993+00 |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### **Runoff Depth (Q) =** 9.9 in Q = $(P - 0.2S)^2/(P + 0.8S)$

#### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 13.88 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 8.46  | ас |
| Total Area        | 22.34 | ас |

## Potential Abstraction (S) = 8.3 S = (1000/CN) - 10

Estimated Runoff Volume = 18.38 ac-ft Peak Volume = A x Q

| Ba      | Basin Limits |         |  |  |  |  |  |
|---------|--------------|---------|--|--|--|--|--|
| 1963+60 | to           | 1993+00 |  |  |  |  |  |

#### CURVE NUMBER CALCUATION:

|                        | TYPE A SC               | ILS | TYPE B SOI              | LS | TYPE C SO               | ILS | TYPE D SO               | ILS    | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN     |         | TOTALAREA  |
| Impervious             | 12.55                   | 98  |                         |    |                         |     |                         |        | 1229.90 | 12.55      |
| Grass                  | 1.33                    | 39  |                         |    |                         |     |                         |        | 51.87   | 1.33       |
| Pond Site (Pervious)   | 4.46                    | 39  |                         |    |                         |     |                         |        | 173.94  | 4.46       |
| Pond Site (Impervious) | 4.00                    | 100 |                         |    |                         |     | 1                       |        | 400.00  | 4.00       |
|                        |                         |     | i l                     |    |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |     | i – 1                   |    |                         |     |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |     |                         |        | 0.00    | 0.00       |
| TOTALS                 | 22.34                   |     | 0                       |    | 0                       | Î I | 0                       |        | 1855.71 | 22.34      |
|                        |                         |     |                         |    |                         |     | WEIGH                   | TED CN |         | 83         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 14.7 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.0 S = (1000/CN) - 10

Estimated Runoff Volume = 27.33 ac-ft Peak Volume = A x Q

Pond Name: 27-3 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                 |           | 13.88 ac         |                     |
|-------------------------------------------------|-----------|------------------|---------------------|
| Weighted C                                      |           | 0.88             |                     |
| Total Impervious                                | 0.95      | 12.55 ac         |                     |
| Total Pervious                                  | 0.20      | 1.33 ac          |                     |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |           | N                |                     |
| Required Treatment (Runoff from 1" Rainfall)    |           | 1.02 ac-ft ] (wh | ichever is greater) |
| Required Treatment (1/2" over Area)             |           | 0.58 ac-ft       | 10112107 10 0,      |
|                                                 |           | 1.02 ac-ft       |                     |
| 2) Estimated Peak Attenuation Volume (EPAV):    |           |                  |                     |
| Existing Runoff Volume                          |           | 18.38 ac-ft      |                     |
| Proposed Runoff Volume                          |           | 27.33 ac-ft      |                     |
| EPAV = Proposed Runoff - Existing Runoff Volume | 9         | 8.94 ac-ft       |                     |
| Floodplain Comp                                 | pensation | 1.71 ac-ft       |                     |
| TOTAL                                           | STORAGE   | 10.65 ac-ft      |                     |
| 3) Estimated Pond Configuration:                |           |                  |                     |
| Maintenance Berm Width                          | 20.0 ft   | Freeboard        | 1.0 ft              |
| L/W Ratio                                       | 2.0       | Side Slopes (1:H | ) 4.0               |
| Maximum Treatment Volume Depth                  | 1.5 ft    | Wet/Dry          | Dry                 |
| Maximum Pond Depth Below Freeboard              | 4.0 ft    | Assumed Contro   | ol EL 67.00 ft      |

#### 4) Estimated Pond Dimensions Including Freeboard

Maximum Pond Depth Below Freeboard

| LTOP OF SLOPE | 516 ft  |
|---------------|---------|
| WTOP OF SLOPE | 258 ft  |
| Area          | 3.05 ac |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 667 ft  |
|-------|---------|
| WSITE | 357 ft  |
| Area  | 5.47 ac |

|     | <u>Contour</u> | Area   | Storage Cumulative Notes               |  |
|-----|----------------|--------|----------------------------------------|--|
| GIS | 66             | 44350  | 0.0 0.0 Soil 15                        |  |
| GIS | 70             | 91245  | 271190.0 271190.0                      |  |
| GIS | 72             | 116650 | 207895.0 479085.0                      |  |
|     |                |        | Cumulative Ret (ac-ft) Below Freeboard |  |
|     |                |        | 11.00                                  |  |

<u>Pond</u> 27-3

| Pond Area |          |
|-----------|----------|
| 2.7       | 602527   |
|           | 13.83212 |

#### I-75 Pond Siting

#### FPID: 452074-2-32-01

| Pond Name: | 28-1      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

#### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 16.08 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 10.63 | ас |
| Total Area        | 26.71 | ас |

**Basin Limits** 1993+00 2016+20 to

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SOILS            |     | TYPE B SOILS                          |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA  |
|-------------------------|-------------------------|-----|---------------------------------------|----|-------------------------|----|-------------------------|--------|---------|-------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> )               | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         | TOTALPHILDT |
| Impvervious             | 4.69                    | 98  |                                       |    |                         |    |                         |        | 459.31  | 4.69        |
|                         | 11.39                   | 39  |                                       |    |                         |    |                         |        | 444.33  | 11.39       |
| Grass                   | 10.63                   | 39  |                                       |    |                         |    |                         |        | 414.57  | 10.63       |
| Pond Site Pre Condition | 10.05                   | 32  |                                       |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |     |                                       |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |     |                                       |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |     |                                       |    |                         |    |                         |        | 0.00    | 0.00        |
|                         |                         |     |                                       |    |                         |    |                         |        | 0.00    | 0.00        |
| TOTALS                  | 26.71                   | + + | 0                                     |    | 0                       |    | 0                       |        | 1318.22 | 26.71       |
| TUTALS                  | 20.71                   |     | , , , , , , , , , , , , , , , , , , , |    |                         |    | WEIGH                   | TED CN |         | 49          |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 8.8 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

#### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 16.08 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 10.63 ft <sup>2</sup> |
| Total Area        | 26.71 ft <sup>2</sup> |

#### Estimated Runoff Volume = 19.54 Peak Volume = A x Q

S = (1000/CN) - 10

10.3

ac-ft

Potential Abstraction (S) =

**Basin Limits** 2016+20 1993+00 to

#### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | R       |            |
| Impervious             | 14.38                   | 98  |                         |    |                         |    |                         |        | 1409.26 | 14.38      |
|                        | 1.70                    | 39  |                         |    |                         |    |                         |        | 66.29   | 1.70       |
| Grass                  |                         | _   |                         |    |                         |    |                         | 1      | 141.57  | 3.63       |
| Pond Site (Pervious)   | 3.63                    | 39  |                         |    |                         |    |                         |        | 700.00  | 7.00       |
| Pond Site (Impervious) | 7.00                    | 100 |                         |    |                         | +  |                         |        |         | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    |            |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | + + |                         |    |                         |    | []                      |        | 0.00    | 0.00       |
| TOTALS                 | 26.71                   |     | 0                       |    | 0                       |    | 0                       |        | 2317.12 | 26.71      |
| IUIAD                  | 20.74                   |     |                         |    |                         | ÷  | WEIGH                   | TED CN |         | 87         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.2 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.5 S = (1000/CN) - 10

ac-ft Estimated Runoff Volume = 33.82 Peak Volume = A x Q

Pond Name: 28-1 Date: 2/28/2024

#### POND SIZING ESTIMATION

#### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                      |                                                 |          | 16.08 ac     |                        |
|--------------------------------------|-------------------------------------------------|----------|--------------|------------------------|
| Weighted C                           |                                                 |          | 0.87         |                        |
|                                      | <b>Total Impervious</b>                         | 0.95     | 14.38 ac     |                        |
|                                      | Total Pervious                                  | 0.20     | 1.70 ac      |                        |
| Outstanding FL Water (Y/N)[mi        | ultiply x 1.5]                                  |          | N            |                        |
| Required Treatment (Runoff fro       | om 1" Rainfall)                                 |          | _ 1.17 ac-ft | (whichever is greater) |
| Required Treatment (1/2" over        | Area)                                           |          | 0.67 ac-ft 了 | (whichever is greater) |
|                                      |                                                 |          | 1.17 ac-ft   |                        |
| 2) Estimated Peak Attenuation Volume | e (EPAV):                                       |          |              |                        |
| Existing Runoff Volume               |                                                 |          | 19.54 ac-ft  |                        |
| Proposed Runoff Volume               |                                                 |          | 33.82 ac-ft  |                        |
| EPAV = Proposed Runoff - Exist       | EPAV = Proposed Runoff - Existing Runoff Volume |          | 14.28 ac-ft  |                        |
|                                      | Floodplain Comp                                 | ensation | 2.23 ac-ft   |                        |
|                                      | TOTAL                                           | STORAGE  | 16.51 ac-ft  |                        |
| 3) Estimated Pond Configuration:     | TOTAL                                           | STORAGE  | 10.31 dC-1   |                        |
| Maintenance Berm Width               |                                                 | 20.0 ft  | Freeboard    | 1.0 ft                 |
| L/W Ratio                            |                                                 | 2.0      | Side Slope   | s (1:H) 4.0            |
| Maximum Treatment Volume I           | Depth                                           | 1.5 ft   | t Wet/Dry    | Dry                    |
| Maximum Pond Depth Below F           | reeboard                                        | 4.0 ft   | Assumed (    | Control EL 70.00 ft    |

#### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 636 ft  |
|---------------|---------|
| WTOP OF SLOPE | 318 ft  |
| Area          | 4.64 ac |

| LSITE | 811 ft  |
|-------|---------|
| WSITE | 430 ft  |
| Area  | 8.00 ac |

|     | Contour | <u>Area</u> | Storage Cumulative Notes               |  |
|-----|---------|-------------|----------------------------------------|--|
| GIS | 75      | 42350       | 0.0 0.0 Soil 15                        |  |
| GIS | 79      | 86750       | 258200.0 258200.0                      |  |
| GIS | 83      | 118750      | 411000.0 669200.0                      |  |
|     |         |             | Cumulative Ret (ac-ft) Below Freeboard |  |
|     |         |             | 15.36                                  |  |
|     |         |             |                                        |  |

Pond 28-1

| Pond Area |          |
|-----------|----------|
| 2.7       | 602527   |
|           | 40.00040 |

# I-75 Pond Siting

### FPID: 452074-2-32-01

|                    | P            | ond Name: 28-2<br>Date: 2/28/ | 2024         | Full      | Туріс     | al Section W | /idth |
|--------------------|--------------|-------------------------------|--------------|-----------|-----------|--------------|-------|
| PRE-DEVELOPMENT R  | UNOFF PARAME | TERS                          |              |           |           |              |       |
| Onsite Basin Area  | 16.08 ac     |                               |              | В         | lasin Lim | nits         | _     |
| Pond Parcel Area   | 9.91 ac      |                               |              | 1993+00   | to        | 2016+20      |       |
| Total Area         | 25.99 ac     |                               |              |           |           |              |       |
| CURVE NUMBER CALCU | ATION:       |                               |              |           |           |              |       |
| LAND USE           | TYPE A SOILS | TYPE B SOILS                  | TYPE C SOILS | TYPE D SO | ns        | CN*A         | TOTA  |
|                    |              | 2                             |              |           |           |              | 1     |

|                         |                         |    |                         |    |                         |    |                         |        | CN*A I  | TOTAL AREA |
|-------------------------|-------------------------|----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN     |         | TOTALANLA  |
| Impvervious             | 4.69                    | 98 |                         |    |                         |    |                         |        | 459.31  | 4.69       |
| Grass                   | 11.39                   | 39 |                         |    |                         |    |                         |        | 444.33  | 11.39      |
| Pond Site Pre Condition | 9.91                    | 39 |                         |    |                         |    |                         |        | 386.49  | 9.91       |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |    | [                       |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 25.99                   |    | 0                       |    | 0                       |    | 0                       |        | 1290.14 | 25.99      |
|                         |                         | ð  |                         |    |                         |    | WEIGH                   | TED CN |         | 50         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### Runoff Depth (Q) = 8.8 in $Q = (P - 0.2S)^2 / (P + 0.8S)$

## **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 16.08 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 9.91 ft <sup>2</sup>  |
| Total Area        | 25.99 ft <sup>2</sup> |

| S = (1000/CN) - 10        |       |
|---------------------------|-------|
| Estimated Runoff Volume = | 19.15 |

10.1

ac-ft

Peak Volume = A x Q

Potential Abstraction (S) =

| Basin Limits |    |         |  |  |  |  |
|--------------|----|---------|--|--|--|--|
| 1993+00      | to | 2016+20 |  |  |  |  |

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | GLA     | TOTAL AREA |
| Impervious             | 14.38                   | 98  |                         |    |                         |    |                         |        | 1409.26 | 14.38      |
| Grass                  | 1.70                    | 39  |                         |    |                         |    |                         |        | 66.29   | 1.70       |
| Pond Site (Pervious)   | 3.01                    | 39  |                         |    |                         |    | []                      |        | 117.39  | 3.01       |
| Pond Site (Impervious) | 6.90                    | 100 |                         |    |                         |    |                         |        | 690.00  | 6.90       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 25.99                   |     | 0                       |    | 0                       | İ  | 0                       |        | 2282.94 | 25.99      |
|                        |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 88         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.3 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 1.4 S = (1000/CN) - 10

Estimated Runoff Volume = 33.23 ac-ft Peak Volume = A x Q

Pond Name: 28-2 Date: 2/28/2024

### POND SIZING ESTIMATION

٢

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|                                                 |           | 16.08 ac              |                   |
|-------------------------------------------------|-----------|-----------------------|-------------------|
| Area Inside R/W                                 |           |                       |                   |
| Weighted C                                      |           | 0.87                  |                   |
| Total Impervious                                | 0.95      | 14.38 ac              |                   |
| Total Pervious                                  | 0.20      | 1.70 ac               |                   |
| Outstanding FL Water (Y/N)[multiply x 1.5]      |           | N                     |                   |
| Required Treatment (Runoff from 1" Rainfall)    |           | 1.17 ac-ft ] (utished | in the superstant |
| Required Treatment (1/2" over Area)             |           | 0.67 ac-ft            | er is greater)    |
| Required Treatment (1/2 - over Area)            |           | 1.17 ac-ft            |                   |
| 2) Estimated Peak Attenuation Volume (EPAV):    |           |                       |                   |
| Existing Runoff Volume                          |           | 19.15 ac-ft           |                   |
| Proposed Runoff Volume                          |           | 33.23 ac-ft           |                   |
| EPAV = Proposed Runoff - Existing Runoff Volume | e         | 14.09 ac-ft           |                   |
|                                                 |           |                       |                   |
| Floodplain Comp                                 | pensation | 2.23 ac-ft            |                   |
| TOTAL                                           | STORAGE   | 16.32 ac-ft           |                   |
| 3) Estimated Pond Configuration:                |           |                       |                   |
| Maintenance Berm Width                          | 20.0 ft   | Freeboard             | 1.0 ft            |
| L/W Ratio                                       | 2.0       | Side Slopes (1:H)     | 4.0               |
| -                                               | 1.5 ft    | Wet/Dry               | Dry               |
| Maximum Treatment Volume Depth                  | 2.00      |                       | 70.00             |

4) Estimated Pond Dimensions Including Freeboard

Maximum Pond Depth Below Freeboard

| LTOP OF SLOPE | 632 ft  |
|---------------|---------|
| WTOP OF SLOPE | 316 ft  |
| Area          | 4.59 ac |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 807 ft  |
|-------|---------|
| WSITE | 427 ft  |
| Area  | 7.92 ac |

4.0 ft

70.00 ft

Assumed Control EL

|     | <u>Contour</u> | <u>Area</u> | Storage Cumulative Notes               |  |
|-----|----------------|-------------|----------------------------------------|--|
| GIS | 68             | 73340       | 0.0 0.0 Soil 15                        |  |
| GIS | 72             | 107650      | 361980.0 361980.0                      |  |
| GIS | 75             | 126640      | 351435.0 713415.0                      |  |
|     |                |             | Cumulative Ret (ac-ft) Below Freeboard |  |
|     |                |             | 16.38                                  |  |

Pond

<u>28-2</u>

| Pond Area |          |
|-----------|----------|
| 2.9       | 602527   |
|           | 40.00040 |

# I-75 Pond Siting

### FPID: 452074-2-32-01

| Pond Name: | 28-3      | Full | <b>Typical Section Width</b> |
|------------|-----------|------|------------------------------|
| Date:      | 2/28/2024 |      |                              |

### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 15.08 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 9.35  | ac |
| Total Area        | 25.43 | ac |

**Basin Limits** 1993+00 2016+20 to

# CURVE NUMBER CALCUATION:

|                         | TYPE A SO               | ILS | TYPE & SOILS            |     | TYPE C SOILS            |                  | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----|-------------------------|-----|-------------------------|------------------|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN               | AREA (ft <sup>2</sup> ) | CN     | CIT A   |            |
| Lasan ya mila ya        | 4.69                    | 98  |                         |     |                         |                  |                         |        | 459.31  | 4.69       |
| Impvervious             | 11.39                   | 39  |                         | 1   |                         |                  |                         |        | 444.33  | 11.39      |
| Grass                   |                         |     |                         |     |                         |                  |                         |        | 364.65  | 9.35       |
| Pond Site Pre Condition | 9.35                    | 39  |                         | + + |                         | $\left  \right $ |                         | 1-1    | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |                  |                         | 1      | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |                  |                         |        | 0.00    | 0.00       |
|                         |                         |     |                         |     |                         |                  |                         | 1 1    | 0.00    | 0.00       |
|                         |                         |     |                         | 1-1 |                         |                  |                         |        | 0.00    | 0.00       |
| TOTALS                  | 25.43                   |     | 0                       |     | 0                       |                  | 0                       |        | 1268.30 | 25.43      |
| TOTALS                  | 23.45                   | 1   |                         |     |                         |                  | WEIGH                   | TED CN |         | 50         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### Runoff Depth (Q) = 8.9 in $Q = (P - 0.2S)^2/(P + 0.8S)$

### POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 16.08 ft <sup>2</sup> |
|-------------------|-----------------------|
| Pond Parcel Area  | 9.35 ft <sup>2</sup>  |
| Total Area        | 25.43 ft <sup>2</sup> |

#### S = (1000/CN) - 10Estimated Runoff Volume = 18.84

Peak Volume = A x Q

Potential Abstraction (S) =

**Basin Limits** 1993+00

2016+20 to

10.1

ac-ft

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SC               | TYPE A SOILS TYPE B SOILS |                         | TYPE C SOILS |                         | TYPE D SOILS |                         | CN*A | TOTAL AREA |       |
|------------------------|-------------------------|---------------------------|-------------------------|--------------|-------------------------|--------------|-------------------------|------|------------|-------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN                        | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN           | AREA (ft <sup>2</sup> ) | CN   |            |       |
|                        | 14.38                   | 98                        |                         |              |                         |              |                         |      | 1409.26    | 14.38 |
| Impervious             |                         |                           |                         |              |                         |              |                         |      | 66.29      | 1.70  |
| Grass                  | 1.70                    | 39                        |                         |              |                         |              | _                       | ++   | 97.50      | 2.50  |
| Pond Site (Pervious)   | 2.50                    | 39                        |                         |              |                         |              |                         |      |            | 6.85  |
| Pond Site (Impervious) | 6.85                    | 100                       |                         |              |                         |              |                         |      | 685.00     |       |
|                        |                         |                           |                         |              |                         |              |                         |      | 0.00       | 0.00  |
|                        |                         |                           |                         |              |                         |              |                         |      | 0.00       | 0.00  |
|                        |                         | +                         |                         |              |                         |              |                         |      | 0.00       | 0.00  |
|                        |                         |                           |                         |              |                         |              |                         |      | 0.00       | 0.00  |
| TOTALS                 | 25.43                   | +                         | 0                       |              | 0                       |              | 0                       |      | 2258.05    | 25.43 |
| TOTALS                 | 20.40                   |                           |                         | 1            | WEIGHTED CN             |              |                         |      | 89         |       |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

Estimated Runoff Volume = 32.79 ac-ft Peak Volume = A x Q

Pond Name: 28-3 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                              |              | 16.08 ac     |                        |
|----------------------------------------------|--------------|--------------|------------------------|
| Weighted C                                   |              | 0.87         |                        |
| Total Impe                                   |              | 14.38 ac     |                        |
| Total Pe                                     | rvious 0.20  | 1.70 ac      |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]   |              | N            |                        |
| Required Treatment (Runoff from 1" Rainfa    | all)         | 1.17 ac-ft _ | (whichever is greater) |
| Required Treatment (1/2" over Area)          |              | 0.67 ac-ft 了 | (minenever is greater) |
|                                              |              | 1.17 ac-ft   |                        |
| 2) Estimated Peak Attenuation Volume (EPAV): |              |              |                        |
| Existing Runoff Volume                       |              | 18.84 ac-ft  |                        |
| Proposed Runoff Volume                       |              | 32.79 ac-ft  |                        |
| EPAV = Proposed Runoff - Existing Runoff \   | /olume       | 13.95 ac-ft  |                        |
| Floodplain                                   | Compensation | 2.23 ac-ft   |                        |
| т                                            | OTAL STORAGE | 16.18 ac-ft  |                        |
| 3) Estimated Pond Configuration:             |              |              |                        |
| Maintenance Berm Width                       | 20.0 f       | t Freeboard  | 1.0 ft                 |
| L/W Ratio                                    | 2.0          | Side Slope   | s (1:H) 4.0            |
| Maximum Treatment Volume Depth               | 1.5 f        | t Wet/Dry    | Dry                    |
| Maximum Pond Depth Below Freeboard           | 4.0 f        | t Assumed (  | Control EL 70.00 ft    |
|                                              |              |              |                        |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 630 ft  |
|---------------|---------|
| WTOP OF SLOPE | 315 ft  |
| Area          | 4.55 ac |

| LSITE | 804 ft  |
|-------|---------|
| WSITE | 426 ft  |
| Area  | 7.86 ac |

|     | <u>Contour</u> | <u>Area</u> | Storage Cumulative Notes               |  |
|-----|----------------|-------------|----------------------------------------|--|
| GIS | 68             | 66550       | 0.0 0.0 Soil 15                        |  |
| GIS | 72             | 98760       | 330620.0 330620.0                      |  |
| GIS | 76             | 115660      | 428840.0 759460.0                      |  |
| •   |                |             | Cumulative Ret (ac-ft) Below Freeboard |  |
|     |                |             | 17.43                                  |  |
|     |                |             |                                        |  |

Pond 28-3

| Pond Area |          |
|-----------|----------|
| 2.7       | 602527   |
|           | 13.83212 |

# POND SIZING CALCULATIONS I-75 Pond Siting

# FPID: 452074-2-32-01

| Pond Name: | 29-1      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

## PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 18.36 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 6.13  | ас |
| Total Area        | 24.49 | ас |

 Basin Limits

 2016+20
 to
 2043+00

### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SOILS            |    | TYPE B SOILS            |    | TYPE C SOILS            |     | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|----|-------------------------|----|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN     | UNA     | IOTAL AREA |
| Impvervious             | 5.41                    | 98 |                         |    |                         | 1   |                         |        | 530.59  | 5.41       |
| Grass                   | 12.95                   | 39 |                         | 1  |                         |     |                         |        | 504.89  | 12.95      |
| Pond Site Pre Condition | 6.13                    | 39 |                         |    |                         | 1   |                         |        | 239.07  | 6.13       |
|                         |                         |    |                         |    |                         | 1   |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |     |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |     |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         |     |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |    |                         | i — |                         |        | 0.00    | 0.00       |
| TOTALS                  | 24.49                   | İ  | 0                       |    | 0                       |     | 0                       |        | 1274.54 | 24.49      |
|                         |                         |    |                         |    |                         |     | WEIGH                   | TED CN |         | 52         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 9.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

# **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 18.36 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 6.13  | ас |
| Total Area        | 24.49 | ac |

Potential Abstraction (S) = 9.2 S = (1000/CN) - 10

Estimated Runoff Volume = 19.06 ac-ft Peak Volume = A x Q

Basin Limits
2016+20 to 2043+00

#### **CURVE NUMBER CALCUATION:**

| LAND USE               | TYPE A SOILS            |     | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
|                        | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | UN-A    | TOTALAREA  |
| Impervious             | 16.61                   | 98  |                         |    |                         |    |                         |        | 1627.93 | 16.63      |
| Grass                  | 1.75                    | 39  |                         |    |                         |    |                         |        | 68.19   | 1.75       |
| Pond Site (Pervious)   | 1.88                    | 39  |                         |    |                         |    |                         |        | 73.32   | 1.88       |
| Pond Site (Impervious) | 4.25                    | 100 |                         |    |                         |    |                         |        | 425.00  | 4.25       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 24.49                   | 1   | 0                       |    | 0                       |    | 0                       |        | 2194.44 | 24.49      |
|                        |                         |     |                         |    |                         |    | WEIGH                   | TED CN |         | 90         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.2 S = (1000/CN) - 10

Estimated Runoff Volume = 31.80 ac-ft Peak Volume = A x Q

Pond Name: 29-1 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|          | Area Inside R/W<br>Weighted C<br>Total Impervious<br>Total Pervious                        | 0.95<br>0.20 | 18.36 ac<br>0.88<br>16.61 ac<br>1.75 ac |                        |
|----------|--------------------------------------------------------------------------------------------|--------------|-----------------------------------------|------------------------|
|          | Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall) |              | N<br>1.34 ac-ft                         |                        |
|          | Required Treatment (1/2" over Area)                                                        |              | 0.77 ac-ft                              | (whichever is greater) |
| 2) Estir | nated Peak Attenuation Volume (EPAV):                                                      |              |                                         |                        |
|          | Existing Runoff Volume                                                                     |              | 19.06 ac-ft                             |                        |
|          | Proposed Runoff Volume                                                                     |              | 31.80 ac-ft                             |                        |
|          | EPAV = Proposed Runoff - Existing Runoff Volume                                            | e            | 12.74 ac-ft                             |                        |
|          | Floodplain Comp                                                                            | pensation    | 2.15 ac-ft                              |                        |
|          | TOTAL                                                                                      | STORAGE      | 14.89 ac-ft                             |                        |
| 3) Estir | nated Pond Configuration:                                                                  |              |                                         |                        |
|          | Maintenance Berm Width                                                                     | 20.0 ft      | Freeboard                               | 1.0 ft                 |
|          | L/W Ratio                                                                                  | 2.0          | Side Slopes                             | (1:H) 4.0              |
|          | Maximum Treatment Volume Depth                                                             | 1.5 ft       | : Wet/Dry                               | Dry                    |
|          | Maximum Pond Depth Below Freeboard                                                         | 6.0 ft       | : Assumed C                             | ontrol EL 80.00 ft     |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 506 ft  |
|---------------|---------|
| WTOP OF SLOPE | 253 ft  |
| Area          | 2.94 ac |

| LSITE | 656 ft  |
|-------|---------|
| WSITE | 352 ft  |
| Area  | 5.30 ac |

|     | <u>Contour</u> | <u>Area</u> | Storage Cumulative Notes               |
|-----|----------------|-------------|----------------------------------------|
| GIS | 73             | 55650       | 0.0 0.0 Soil 15                        |
| GIS | 76             | 92350       | 222000.0 222000.0                      |
| GIS | 80             | 124340      | 433380.0 655380.0                      |
|     |                |             | Cumulative Ret (ac-ft) Below Freeboard |
|     |                |             | 15.05                                  |

| Pond Area |          |
|-----------|----------|
| 2.9       | 602527   |
|           | 10.00010 |

13.83212

# Pond 29-1

# I-75 Pond Siting

## FPID: 452074-2-32-01

| Pond Name: | 29-2      | Full | Typical Section Width |
|------------|-----------|------|-----------------------|
| Date:      | 2/28/2024 |      |                       |

# PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 18.36 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 6.74  | ac |
| Total Area        | 25.1  | ас |

 Basin Limits

 2016+20
 to
 2043+00

### CURVE NUMBER CALCUATION:

|                         | TYPE A SOILS            |    | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) |    | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | di A    |            |
| terminut                | 5.41                    | 98 |                         | t t |                         |    |                         |        | 530.59  | 5.41       |
| Impvervious             | 12.95                   | 39 |                         | 1-1 |                         |    |                         |        | 504.89  | 12.95      |
| Grass                   |                         | 39 |                         |     |                         |    |                         |        | 262.86  | 6.74       |
| Pond Site Pre Condition | 6.74                    | 39 |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |    |                         |     |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 25.1                    | -+ | 0                       |     | 0                       |    | 0                       | 1 1    | 1298.33 | 25.1       |
| TOTALS                  | 23.1                    |    | 0                       |     |                         |    | WEIGH                   | TED CN |         | 52         |

#### Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

**Runoff Depth (Q) =** 9.3 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

# POST-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 18.36 | ас |  |
|-------------------|-------|----|--|
| Pond Parcel Area  | 6.74  | ас |  |
| Total Area        | 25.1  | ас |  |

# S = (1000/CN) - 10 Estimated Runoff Volume = 19.40

Potential Abstraction (S) =

Peak Volume = A x Q

9.3

ac-ft

| Basin Limits |    |         |  |  |  |  |
|--------------|----|---------|--|--|--|--|
| 2016+20      | to | 2043+00 |  |  |  |  |

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |     | TYPE B SOILS            |    | TYPE C SOILS            |     | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-------------------------|----|-------------------------|-----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN     | UT A    | TOTAL      |
| Impervious             | 16.61                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 98  |                         |    |                         | T I |                         |        | 1627.93 | 16.61      |
|                        | 1.75                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39  |                         |    |                         |     |                         |        | 68.19   | 1.75       |
| Grass                  | 2.24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 39  |                         |    |                         |     |                         |        | 87.36   | 2.24       |
| Pond Site (Pervious)   | And the Real Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of the Property lies of |     |                         |    |                         |     |                         |        | 450.00  | 4.50       |
| Pond Site (Impervious) | 4.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 100 |                         |    |                         | +   |                         |        | 0.00    | 0.00       |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +   |                         | ++ |                         |     |                         |        | 0.00    | 0.00       |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | +   |                         |    |                         |     |                         |        | 0.00    | 0.00       |
|                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |     |                         |    |                         |     |                         |        | 0.00    | 0.00       |
| TOTALS                 | 25.1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |     | 0                       |    | 0                       |     | 0                       |        | 2233.48 | 25.1       |
| 101765                 | 2.5.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |     |                         |    |                         |     | WEIGH                   | TED CN |         | 89         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (\$) = 1.2 S = (1000/CN) - 10

Estimated Runoff Volume = 32.42 ac-ft Peak Volume = A x Q

Pond Name: 29-2 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                   |           | 18.36 ac     |                        |
|---------------------------------------------------|-----------|--------------|------------------------|
| Weighted C                                        |           | 0.88         |                        |
| Total Impervious                                  | 0.95      | 16.61 ac     |                        |
| Total Pervious                                    | 0.20      | 1.75 ac      |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]        |           | N            |                        |
| Required Treatment (Runoff from 1" Rainfall)      |           | ן 1.34 ac-ft | (whichever is greater) |
| Required Treatment (1/2" over Area)               |           | 0.77 ac-ft 了 | (whichever is greater) |
|                                                   |           | 1.34 ac-ft   |                        |
|                                                   |           |              |                        |
| 2) Estimated Peak Attenuation Volume (EPAV):      |           |              |                        |
| Existing Runoff Volume                            |           | 19.40 ac-ft  |                        |
| Proposed Runoff Volume                            |           | 32.42 ac-ft  |                        |
| EPAV = Proposed Runoff - Existing Runoff Volum    | e         | 13.02 ac-ft  |                        |
| Floodplain Com                                    | pensation | 2.15 ac-ft   |                        |
| TOTAL                                             | STORAGE   | 15.17 ac-ft  |                        |
| 3) Estimated Pond Configuration:                  |           |              |                        |
| Maintenance Berm Width                            | 20.0 ft   | Freeboard    | 1.0 ft                 |
| L/W Ratio                                         | 2.0       | Side Slope   | es (1:H) 4.0           |
| Maximum Treatment Volume Depth                    | 1.5 ft    | Wet/Dry      | Dry                    |
| Maximum Pond Depth Below Freeboard                | 6.0 ft    | Assumed      | Control EL 80.00 ft    |
|                                                   |           |              |                        |
| Almost in the state of the trade the first second |           |              |                        |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 511 ft  |
|---------------|---------|
| WTOP OF SLOPE | 255 ft  |
| Area          | 3.00 ac |

| LSITE | 661 ft  |
|-------|---------|
| WSITE | 355 ft  |
| Area  | 5.38 ac |

|     | <u>Contour</u> | <u>Area</u>                            | <u>Storage</u> | <u>Cumulative</u> | <u>Notes</u> |  |  |  |  |
|-----|----------------|----------------------------------------|----------------|-------------------|--------------|--|--|--|--|
| GIS | 85             | 62450                                  | 0.0            | 0.0               | Soil 15      |  |  |  |  |
| GIS | 90             | 104450                                 | 417250.0       | 417250.0          |              |  |  |  |  |
| GIS | 93             | 118980                                 | 335145.0       | 752395.0          |              |  |  |  |  |
|     |                | Cumulative Ret (ac-ft) Below Freeboard |                |                   |              |  |  |  |  |
|     |                |                                        |                | 17.27             |              |  |  |  |  |
|     |                |                                        |                |                   |              |  |  |  |  |

<u>29-2</u>

Pond

| Pond Area |  |
|-----------|--|
| 2.7       |  |

# I-75 Pond Siting

### FPID: 452074-2-32-01

|                         |                                                       | _    |                         |       |                         |        |                                        | <b>.</b>        |              | t.a.l.     |
|-------------------------|-------------------------------------------------------|------|-------------------------|-------|-------------------------|--------|----------------------------------------|-----------------|--------------|------------|
|                         |                                                       | P    | ond Name:               |       |                         |        | Full                                   | I ypica         | al Section W | lath       |
|                         |                                                       |      | Date:                   | 2/28/ | 2024                    |        |                                        |                 |              |            |
| PRE-DEVELOPMENT RU      | JNOFF PA                                              | RAMI | ETERS                   |       |                         |        |                                        |                 |              |            |
| Onsite Basin Area       | 18.36                                                 | ас   |                         |       |                         |        | В                                      | asin Lim        | its          |            |
| Pond Parcel Area        | 6.65                                                  | ас   |                         |       |                         |        | 2016+20                                | to              | 2043+00      |            |
| Total Area              | 25.01                                                 | ас   |                         |       |                         |        |                                        |                 |              |            |
| CURVE NUMBER CALCUA     | TION:                                                 |      |                         |       |                         |        |                                        |                 |              |            |
|                         | TYPE A SO                                             | ILS  | TYPE B 50               | ILS   | TYPE C SOI              | LS     | TYPE D SO                              | ILS             |              |            |
| LAND USE                | AREA (ft <sup>2</sup> )                               | CN   | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )                | CN              | CN*A         | TOTAL AREA |
| Impvervious             | 5.41                                                  | 98   |                         |       |                         |        |                                        |                 | 530.59       | 5.4        |
| Grass                   | 12.95                                                 | 39   |                         |       |                         |        |                                        |                 | 504.89       | 12.9       |
| Pond Site Pre Condition | 6.65                                                  | 39   |                         |       |                         |        |                                        |                 | 259.35       | 6.6        |
|                         |                                                       |      |                         |       |                         |        |                                        |                 | 0.00         | 0.0        |
|                         |                                                       |      |                         |       |                         | -      |                                        |                 | 0.00         | 0.0        |
|                         |                                                       |      |                         |       |                         |        |                                        |                 | 0.00         | 0.0        |
|                         |                                                       |      |                         |       |                         |        |                                        | $ \rightarrow $ | 0.00         | 0.0        |
| TOTALS                  | 25.01                                                 |      | 0                       |       | 0                       |        | 0                                      |                 | 1294.82      | 25.0       |
| TOTALS                  | 25.01                                                 |      |                         |       | 0                       |        | WEIGH                                  | TED CN          | 1254.02      | 5          |
| Rainfall Depth for 100  | <b>yr-240hr (P) =</b><br>NOAA Atlas 14                |      | in                      |       |                         | Pote   | n <b>tial Abstracti</b><br>S = (1000/0 |                 | 9.3          |            |
|                         | <b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S) |      | in                      |       |                         | Estima | a <b>ted Runoff Vo</b><br>Peak Volume  |                 | 19.35        | ac-ft      |
| POST-DEVELOPMENT        | RUNOFF P                                              | ARAN | <b>IETERS</b>           |       |                         |        |                                        |                 |              |            |
| Onsite Basin Area       | 18.36                                                 | ас   |                         |       |                         |        | 6                                      | asin Lim        | nits         |            |
| Pond Parcel Area        | 6.65                                                  | ас   |                         |       |                         |        | 2016+20                                | to              | 2043+00      |            |
| Total Area              | 25.01                                                 | ас   |                         |       |                         |        |                                        |                 |              |            |
| CURVE NUMBER CALCUA     | ATION:                                                |      |                         |       |                         |        |                                        |                 |              |            |
| LAND USE                | TYPE A SO                                             | ILS  | TYPE B SO               | ILS   | TYPE C SO               | -      | TYPE D SO                              |                 | CN*A         | TOTAL AREA |
|                         | AREA (ft <sup>2</sup> )                               | CN   | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )                | CN              |              |            |
| mnervious               | 16.61                                                 | 98   |                         |       |                         |        |                                        | I 1             | 1627.93      | 16.        |

|                        | TYPE A SOILS TYPE B SOILS |     | TYPECSOILS              |     | ITPE D SUILS            |    | CN*A                    | TOTAL AREA |         |           |
|------------------------|---------------------------|-----|-------------------------|-----|-------------------------|----|-------------------------|------------|---------|-----------|
| LAND USE               | AREA (ft <sup>2</sup> )   | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN         | CIT A   | TOTALANEA |
| Impervious             | 16.61                     | 98  |                         |     |                         |    |                         |            | 1627.93 | 16.61     |
| Grass                  | 1.75                      | 39  |                         |     |                         |    |                         |            | 68.19   | 1.75      |
| Pond Site (Pervious)   | 1.75                      | 39  |                         |     |                         |    |                         |            | 68.25   | 1.75      |
| Pond Site (Impervious) | 4.90                      | 100 |                         |     |                         |    |                         |            | 490.00  | 4.90      |
|                        |                           |     |                         |     |                         |    |                         |            | 0.00    | 0.00      |
|                        |                           | Î Î |                         |     |                         |    |                         |            | 0.00    | 0.00      |
|                        |                           |     |                         |     |                         |    |                         |            | 0.00    | 0.00      |
|                        |                           |     |                         | 1 1 |                         |    |                         |            | 0.00    | 0.00      |
| TOTALS                 | 25.01                     |     | 0                       | 1   | 0                       |    | 0                       |            | 2254.37 | 25.01     |
|                        |                           |     |                         |     |                         |    | WEIGH                   | TED CN     |         | 90        |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.7 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.1 S = (1000/CN) - 10

Estimated Runoff Volume = 32.63 ac-ft Peak Volume = A x Q

Pond Name: 29-3 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W<br>Weighted C<br>Total Impervious<br>Outstanding FL Water (Y/N)[multiply x 1.5]<br>Required Treatment (Runoff from 1" Rainfall)<br>Required Treatment (1/2" over Area) | 0.95<br>0.20                       | 18.36 ac<br>0.88<br>16.61 ac<br>1.75 ac<br>N<br>1.34 ac-ft<br>0.77 ac-ft<br><b>1.34 ac-ft</b> (whiche | ver is greater)                  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------------------------------------------------------------------------------|----------------------------------|
| 2) Estimated Peak Attenuation Volume (EPAV):                                                                                                                                           |                                    |                                                                                                       |                                  |
| Existing Runoff Volume<br>Proposed Runoff Volume<br>EPAV = Proposed Runoff - Existing Runoff Volume                                                                                    |                                    | 19.35 ac-ft<br>32.63 ac-ft<br><b>13.28 ac-ft</b>                                                      |                                  |
| Floodplain Compe                                                                                                                                                                       | nsation                            | 2.15 ac-ft                                                                                            |                                  |
| TOTAL ST<br>3) Estimated Pond Configuration:                                                                                                                                           | ORAGE                              | 15.43 ac-ft                                                                                           |                                  |
| Maintenance Berm Width<br>L/W Ratio<br>Maximum Treatment Volume Depth<br>Maximum Pond Depth Below Freeboard                                                                            | 20.0 ft<br>2.0<br>1.5 ft<br>6.0 ft | Freeboard<br>Side Slopes (1:H)<br>Wet/Dry<br>Assumed Control EL                                       | 1.0 ft<br>4.0<br>Dry<br>80.00 ft |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 515 ft  |
|---------------|---------|
| WTOP OF SLOPE | 257 ft  |
| Area          | 3.04 ac |

| LSITE | 666 ft  |
|-------|---------|
| WSITE | 357 ft  |
| Area  | 5.46 ac |

|     | <u>Contour</u> | <u>Area</u> | Storage Cumulative Notes               |
|-----|----------------|-------------|----------------------------------------|
| GIS | 68             | 42250       | 0.0 0.0 Soil 15                        |
| GIS | 73             | 85670       | 319800.0 319800.0                      |
| GIS | 77             | 113200      | 397740.0 717540.0                      |
|     |                |             | Cumulative Ret (ac-ft) Below Freeboard |
|     |                |             | 16.47                                  |
|     |                |             |                                        |

Pond

<u>29-3</u>

| Pond Area |          |
|-----------|----------|
| 2.6       | 602527   |
|           | 13.83212 |

# I-75 Pond Siting

#### FPID: 452074-2-32-01

| Basin Name: | Basin 30-1A | Half | <b>Typical Section Width</b> |
|-------------|-------------|------|------------------------------|
| Date:       | 2/28/2024   |      |                              |

### PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 20.55 ac |
|-------------------|----------|
| Pond Parcel Area  | 6.77 ac  |
| Total Area        | 27.32 ac |

 Basin Limits

 2043+00
 to
 2091+00

### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SO               | ILS             | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|-------------------------|-------------------------|-----------------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN              | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | M. A    | TOTALTURA  |
| Immunique               | 4.85                    | 98              |                         |    |                         |    |                         |        | 475.15  | 4.85       |
| Impvervious             | 15.70                   | 39              | _                       |    |                         |    |                         |        | 612.36  | 15.70      |
| Grass                   |                         | 39              |                         |    |                         |    |                         |        | 264.03  | 6.77       |
| Pond Site Pre Condition | 6.77                    | - 59            |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | $ \rightarrow $ |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                 |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         |                 |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                         |                         | +               |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                  | 27.32                   | ++              | 0                       |    | 0                       |    | 0                       |        | 1351.54 | 27.32      |
| TOTALS                  | 27.52                   |                 |                         | L  |                         |    | WEIGH                   | TED CN |         | 49         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### **Runoff Depth (Q) =** 8.8 in $Q = (P - 0.2S)^2/(P + 0.8S)$

### **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 20.55 ac |
|-------------------|----------|
| Pond Parcel Area  | 6.77 ac  |
| Total Area        | 27.32 ac |

| Peak Volume = A x Q |  |
|---------------------|--|
|                     |  |
|                     |  |

Potential Abstraction (S) =

Estimated Runoff Volume =

S = (1000/CN) - 10

#### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | di A    |            |
| Impervious             | 14.88                   | 98                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |    |                         |    |                         |        | 1457.85 | 14.88      |
|                        | 5.67                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |    |                         |    |                         |        | 221.28  | 5.67       |
| Grass                  | 2.27                    | 39                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                         |    |                         |    |                         |        | 88.53   | 2.27       |
| Pond Site (Pervious)   |                         | and the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second division of the second divisio |                         |    |                         |    |                         |        | 450.00  | 4.50       |
| Pond Site (Impervious) | 4.50                    | 100                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                         |    |                         |    |                         | ++     | 0.00    | 0.00       |
|                        |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |    |                         | +  |                         |        | 0.00    | 0.00       |
|                        |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |    |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         | +                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                         |    |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 27.32                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 0                       |    | 0                       |    | 0                       |        | 2217.67 | 27.32      |
| TOTAL3                 | 21.32                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | 4  |                         |    | WEIGH                   | TED CN |         | 81         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q)** = 14.4 in Q =  $(P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.3 S = (1000/CN) - 10

Estimated Runoff Volume = 32.79 ac-ft Peak Volume = A x Q

 Basin Limits

 2043+00
 to
 2091+00

10.2

20.04

ac-ft

Basin Name: Basin 30-1A Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |         | 20.55 ac           |                |  |  |  |
|--------------------------------------------------|---------|--------------------|----------------|--|--|--|
| Weighted C                                       |         | 0.74               |                |  |  |  |
| Total Impervious                                 | 0.95    | 14.88 ac           |                |  |  |  |
| Total Pervious                                   |         | 5.67 ac            |                |  |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |         | N                  |                |  |  |  |
| Required Treatment (Runoff from 1" Rainfall)     |         | 1.27 ac-ft         | or is greater) |  |  |  |
| Required Treatment (1/2" over Area)              |         | 0.86 ac-ft         | er is greater) |  |  |  |
|                                                  |         | 1.27 ac-ft         |                |  |  |  |
|                                                  |         |                    |                |  |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):     |         |                    |                |  |  |  |
| Existing Runoff Volume                           |         | 20.04 ac-ft        |                |  |  |  |
| Proposed Runoff Volume                           | -       |                    |                |  |  |  |
| EPAV = Proposed Runoff - Existing Runoff Volum   |         |                    |                |  |  |  |
|                                                  |         |                    |                |  |  |  |
| TOTAL                                            | STORAGE | 14.02 ac-ft        |                |  |  |  |
| 3) Estimated Pond Configuration:                 |         |                    |                |  |  |  |
| Maintenance Berm Width                           | 20.0 ft | Freeboard          | 1.0 ft         |  |  |  |
| L/W Ratio                                        | 2.0     | Side Slopes (1:H)  | 4.0            |  |  |  |
| Maximum Treatment Volume Depth                   | 1.5 ft  | Wet/Dry            | Dry            |  |  |  |
| Maximum Pond Depth Below Freeboard               | 7.0 ft  | Assumed Control EL | ft             |  |  |  |
|                                                  |         |                    |                |  |  |  |
| 4) Estimated Pond Dimensions Including Freeboard |         |                    |                |  |  |  |
|                                                  | 462 ft  |                    |                |  |  |  |

| LTOP OF SLOPE | 462 ft  |
|---------------|---------|
| WTOP OF SLOPE | 231 ft  |
| Area          | 2.45 ac |

| LSITE | 603 ft  |
|-------|---------|
| WSITE | 325 ft  |
| Area  | 4.50 ac |

Pond 30-1B

|     | Contour | <u>Area</u> | Storage Cumulative           | <u>Notes</u>                           |  |  |  |  |  |  |  |
|-----|---------|-------------|------------------------------|----------------------------------------|--|--|--|--|--|--|--|
| GIS | 71      | 46230       | 0.0 0.0                      | Soil 15                                |  |  |  |  |  |  |  |
| GIS | 76      | 86440       | 331675.0 331675.0            |                                        |  |  |  |  |  |  |  |
| GIS | 79      | 104760      | 286800.0 618475.0            |                                        |  |  |  |  |  |  |  |
|     |         |             | Cumulative Ret (ac-ft) Below | Cumulative Ret (ac-ft) Below Freeboard |  |  |  |  |  |  |  |
|     |         |             | 14.20                        |                                        |  |  |  |  |  |  |  |

Pond Area 2.4

# I-75 Pond Siting

## FPID: 452074-2-32-01



## PRE-DEVELOPMENT RUNOFF PARAMETERS

| Onsite Basin Area | 12.51 | ас |
|-------------------|-------|----|
| Pond Parcel Area  | 4.87  | ac |
| Total Area        | 17.38 | ас |

**Basin Limits** 2043+00 2091+00 to

#### **CURVE NUMBER CALCUATION:**

|                         | TYPE A SOILS            |    | TYPE B SOILS                          |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A   | TOTAL AREA |
|-------------------------|-------------------------|----|---------------------------------------|----|-------------------------|----|-------------------------|--------|--------|------------|
| LAND USE                | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> )               | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CN-A   | TOTAL AREA |
| Impvervious             | 4.85                    | 98 |                                       |    |                         |    |                         |        | 475.15 | 4.8        |
| Grass                   | 7.66                    | 39 | 1                                     |    |                         |    |                         |        | 298.80 | 7.60       |
| Pond Site Pre Condition | 4.87                    | 39 |                                       |    |                         |    |                         |        | 189.93 | 4.8        |
|                         |                         |    | 1                                     |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |    | · · · · · · · · · · · · · · · · · · · |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |    |                                       |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |    |                                       |    |                         |    |                         |        | 0.00   | 0.00       |
|                         |                         |    |                                       |    |                         |    | 0                       |        | 0.00   | 0.00       |
| TOTALS                  | 17.38                   |    | 0                                     |    | 0                       |    | 0                       |        | 963.88 | 17.38      |
|                         |                         |    |                                       |    |                         |    | WEIGH                   | TED CN |        | 55         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

#### Runoff Depth (Q) = 10.0 in $Q = (P - 0.2S)^2 / (P + 0.8S)$

# **POST-DEVELOPMENT RUNOFF PARAMETERS**

| Onsite Basin Area | 12.51 ac |  |
|-------------------|----------|--|
| Pond Parcel Area  | 4.87 ac  |  |
| Total Area        | 17.38 ac |  |

| Estimated Runoff Volume = | 14.52 |
|---------------------------|-------|
| Peak Volume = A x Q       |       |
|                           |       |

S = (1000/CN) - 10

Potential Abstraction (S) =

#### 2091+00 2043+00 to

8.0

ac-ft

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |     | TYPE B SOILS            |     | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-----|-------------------------|----|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     | CITA    | TUTALAREA  |
| Impervious             | 11.25                   | 98  | i                       |     |                         |    |                         |        | 1102.50 | 11.25      |
| Grass                  | 1.26                    | 39  |                         |     |                         |    |                         |        | 49.14   | 1.26       |
| Pond Site (Pervious)   | 1.42                    | 39  |                         |     |                         |    | 1                       |        | 55.38   | 1.42       |
| Pond Site (Impervious) | 3.45                    | 100 | (                       |     |                         |    |                         |        | 345.00  | 3.45       |
|                        |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         | 1 1 |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |     |                         |    |                         |        | 0.00    | 0.00       |
| TOTALS                 | 17.38                   | 1 1 | 0                       | 1 1 | 0                       |    | 0                       |        | 1552.02 | 17.38      |
|                        |                         |     |                         |     |                         |    | WEIGH                   | TED CN |         | 89         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.5 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.2 S = (1000/CN) - 10

Estimated Runoff Volume = 22.51 ac-ft Peak Volume = A x Q

**Basin Limits** 

# Basin Name: Basin 30-1B Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|                                                  |         | 10 51              |                 |
|--------------------------------------------------|---------|--------------------|-----------------|
| Area Inside R/W                                  |         | 12.51 ac           |                 |
| Weighted C                                       |         | 0.87               |                 |
| Total Impervious                                 | 0.95    | 11.25 ac           |                 |
| Total Pervious                                   | 0.20    | 1.26 ac            |                 |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |         | N                  |                 |
| Required Treatment (Runoff from 1" Rainfall)     |         | 0.91 ac-ft (whiche | ver is greater) |
| Required Treatment (1/2" over Area)              |         | 0.52 ac-ft         | er is greatery  |
|                                                  |         | 0.91 ac-ft         |                 |
|                                                  |         |                    |                 |
| 2) Estimated Peak Attenuation Volume (EPAV):     |         |                    |                 |
| Existing Runoff Volume                           |         | 14.52 ac-ft        |                 |
| Proposed Runoff Volume                           |         | 22.51 ac-ft        |                 |
| EPAV = Proposed Runoff - Existing Runoff Volum   | e       | 7.99 ac-ft         |                 |
| EFAV - Hoposed Humon - Existing Rate of Film     |         |                    |                 |
| TOTAL                                            | STORAGE | 8.90 ac-ft         |                 |
| 3) Estimated Pond Configuration:                 |         |                    |                 |
| Maintenance Berm Width                           | 20.0 ft | Freeboard          | 1.0 ft          |
|                                                  | 2.0     | Side Slopes (1:H)  | 4.0             |
| L/W Ratio                                        | 1.5 ft  | Wet/Dry            | Dry             |
| Maximum Treatment Volume Depth                   | 7.0 ft  | Assumed Control EL | ft              |
| Maximum Pond Depth Below Freeboard               | 2.00    | Assumed control ee |                 |
| 4) Estimated Pond Dimensions Including Freeboard |         |                    |                 |
| LTOP OF SLOPE                                    | 376 ft  |                    |                 |
|                                                  |         |                    |                 |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 499 ft  |
|-------|---------|
| WSITE | 273 ft  |
| Area  | 3.13 ac |

Area 1.62 ac

WTOP OF SLOPE 188 ft

|     | Pond                                   | <u>30-1B</u> |                          |  |  |  |  |  |
|-----|----------------------------------------|--------------|--------------------------|--|--|--|--|--|
|     | Contour                                | Area         | Storage Cumulative Notes |  |  |  |  |  |
| GIS | 68                                     | 31200        | 0.0 0.0 Soil 15          |  |  |  |  |  |
| GIS | 73                                     | 52330        | 208825.0 208825.0        |  |  |  |  |  |
| GIS | 76                                     | 71990        | 186480.0 395305.0        |  |  |  |  |  |
|     | Cumulative Ret (ac-ft) Below Freeboard |              |                          |  |  |  |  |  |
|     |                                        |              | 9.07                     |  |  |  |  |  |

Pond Area 1.7

## I-75 Pond Siting

|                         |                                                       |          | FPI                     | ): <b>4520</b> | 74-2-32-01              |        |                                      |           |               |            |
|-------------------------|-------------------------------------------------------|----------|-------------------------|----------------|-------------------------|--------|--------------------------------------|-----------|---------------|------------|
|                         |                                                       | P        | ond Name<br>Date        | 30-2<br>2/28/  | /2024                   |        | Full                                 | Туріса    | al Section Wi | dth        |
| PRE-DEVELOPMENT R       | JNOFF PAI                                             | RAME     | ETERS                   |                |                         |        |                                      |           |               |            |
| Onsite Basin Area       | 33.06                                                 | ас       |                         |                |                         |        | E                                    | Basin Lim | its           |            |
| Pond Parcel Area        | 5.00                                                  | ac       |                         |                |                         |        | 2043+00                              | to        | 2091+00       |            |
| Total Area              | 38.06                                                 | ac       |                         |                |                         |        |                                      |           |               |            |
| CURVE NUMBER CALCUA     | TION:                                                 |          |                         |                |                         |        |                                      |           |               |            |
|                         | TYPE A SOI                                            | LS       | TYPE B SO               | ILS            | TYPE C SC               | DILS   | TYPE D SC                            | ILS       | CN*A          | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                               | CN       | AREA (ft <sup>2</sup> ) | CN             | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )              | CN        |               |            |
| Impvervious             | 9.70                                                  | 98       |                         |                |                         |        |                                      |           | 950.30        | 9.70       |
| Grass                   | 23.36                                                 | 39       |                         |                |                         |        |                                      | _ ∤       | 911.16        | 23.36      |
| Pond Site Pre Condition | 5.00                                                  | 39       |                         |                |                         |        |                                      |           | 195.00        | 5.00       |
|                         |                                                       |          |                         |                |                         | -      |                                      | ++        | 0.00          | 0.00       |
|                         |                                                       |          |                         | -              |                         |        |                                      |           | 0.00          | 0.00       |
|                         |                                                       | <u> </u> |                         |                |                         | +      |                                      |           | 0.00          | 0.00       |
|                         |                                                       |          |                         |                |                         | +      |                                      |           | 0.00          | 0.00       |
| TOTALS                  | 38.06                                                 |          | 0                       | -              | 0                       | 1      | 0                                    |           | 2056.46       | 38.06      |
| TOTAL                   | 50.00                                                 |          |                         |                |                         |        | WEIGH                                | TED CN    |               | 54         |
| Rainfall Depth for 100  | <b>iyr-240hr (P) =</b><br>NOAA Atlas 14               | 16.9     | in                      |                |                         | Poter  | ntial Abstracti<br>S = (1000/0       | • •       | 8.5           |            |
|                         | <b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S) | 9.7      | in                      |                |                         | Estima | t <b>ed Runoff Vo</b><br>Peak Volume |           | 30.91 a       | ac-ft      |
| POST-DEVELOPMENT        | RUNOFF P                                              | ARAN     | <b>1ETERS</b>           |                |                         |        |                                      |           |               |            |
| Onsite Basin Area       | 33.06                                                 | ac       |                         |                |                         |        | B                                    | lasin Lim | its           |            |
| Pond Parcel Area        | 5.00                                                  | ас       |                         |                |                         |        | 2043+00                              | to        | 2091+00       |            |
| Total Area              | 38.06                                                 | ас       |                         |                |                         |        |                                      |           |               |            |

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS            |     | TYPE B SOILS            |           | TYPE C SOILS            |          | TYPE D SOILS            |        | CN*A    | TOTAL AREA |
|------------------------|-------------------------|-----|-------------------------|-----------|-------------------------|----------|-------------------------|--------|---------|------------|
| LAND USE               | AREA (ft <sup>2</sup> ) | CN  | AREA (ft <sup>2</sup> ) | CN        | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN     |         | TOTALAREA  |
| Impervious             | 29.75                   | 98  |                         | İ         |                         |          |                         |        | 2915.70 | 29.75      |
| Grass                  | 3.31                    | 39  |                         |           |                         |          |                         |        | 129.01  | 3.31       |
| Pond Site (Pervious)   | 1.30                    | 39  |                         |           |                         |          |                         |        | 50.70   | 1.30       |
| Pond Site (Impervious) | 3.70                    | 100 |                         |           |                         |          |                         |        | 370.00  | 3.70       |
| rond site (impervices) |                         |     |                         |           |                         |          |                         |        | 0.00    | 0.00       |
|                        |                         |     |                         |           |                         |          |                         |        | 0.00    | 0.00       |
|                        |                         | ++  |                         |           |                         |          |                         |        | 0.00    | 0.00       |
|                        |                         | + + |                         |           |                         |          |                         |        | 0.00    | 0.00       |
| TOTALS                 | 38.06                   | +   | 0                       |           | 0                       |          | 0                       |        | 3465.41 | 38.06      |
| 101/100                | 00.00                   | 1   |                         | · · · · · |                         | de anti- | WEIGH                   | TED CN |         | 91         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.8 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 1.0 S = (1000/CN) - 10

Estimated Runoff Volume = 50.03 ac-ft Peak Volume = A x Q

### Pond Name: 30-2 Date: 2/28/2024

# POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                |           | 33.06 ac           |                  |
|------------------------------------------------|-----------|--------------------|------------------|
| Weighted C                                     |           | 0.87               |                  |
| Total Impervious                               | 0.95      | 29.75 ac           |                  |
| Total Pervious                                 | 0.20      | 3.31 ac            |                  |
| Outstanding FL Water (Y/N)[multiply x 1.5]     |           | N                  |                  |
| Required Treatment (Runoff from 1" Rainfall)   |           | 2.41 ac-ft (which  | ever is greater) |
| Required Treatment (1/2" over Area)            |           | 1.38 ac-ft         | ver is greatery  |
|                                                |           | 2.41 ac-ft         |                  |
| 2) Estimated Peak Attenuation Volume (EPAV):   |           |                    |                  |
| Existing Runoff Volume                         |           | 30.91 ac-ft        |                  |
| Proposed Runoff Volume                         |           | 50.03 ac-ft        |                  |
| EPAV = Proposed Runoff - Existing Runoff Volum | e         | 19.13 ac-ft        |                  |
| Floodplain Com                                 | pensation | 5.19 ac-ft         |                  |
| TOTAL                                          | STORAGE   | 21.54 ac-ft        |                  |
| 3) Estimated Pond Configuration:               |           |                    |                  |
| Maintenance Berm Width                         | 20.0 ft   | Freeboard          | 1.0 ft           |
| L/W Ratio                                      | 2.0       | Side Slopes (1:H)  | 4.0              |
| Maximum Treatment Volume Depth                 | 1.5 ft    | Wet/Dry            | Dry              |
| Maximum Pond Depth Below Freeboard             | 4.0 ft    | Assumed Control EL | ft               |
|                                                |           |                    |                  |

### 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 723 ft  |
|---------------|---------|
| WTOP OF SLOPE | 361 ft  |
| Area          | 6.00 ac |

| LSITE | 916 ft   |
|-------|----------|
| WSITE | 482 ft   |
| Area  | 10.13 ac |

|     | Pond           | <u> 30-2</u> |                |                   |              |
|-----|----------------|--------------|----------------|-------------------|--------------|
|     | <u>Contour</u> | <u>Area</u>  | <u>Storage</u> | Cumulative        | <u>Notes</u> |
| GIS | 69             | 56230        | 0.0            | 0.0               | Soil 15      |
| GIS | 74             | 111890       | 420300.0       | 420300.0          |              |
| GIS | 78             | 149340       | 522460.0       | 942760.0          |              |
|     |                |              | Cumulative I   | Ret (ac-ft) Below | w Freeboard  |
|     |                |              |                | 21.64             |              |
|     |                |              |                | Pond Area         |              |

3.4

|                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                              |                         |          | d Siting<br>74-2-32-01  |        |                                                                                                |                                                             |                                                                                            |                                                                                                                 |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------|-------------------------|----------|-------------------------|--------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                    |                                                                                                                                                                                                              | Pc                                                           | ond Name:               | 30-3     |                         |        | Full                                                                                           | Туріс                                                       | al Section Wi                                                                              | idth                                                                                                            |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                              | Date:                   | 2/28/    | 2024                    |        |                                                                                                |                                                             |                                                                                            |                                                                                                                 |
| PRE-DEVELOPMENT RU                                                                                                                                                                                                 | INOFF PAF                                                                                                                                                                                                    | AME                                                          | TERS                    |          |                         |        |                                                                                                |                                                             |                                                                                            |                                                                                                                 |
| Onsite Basin Area                                                                                                                                                                                                  | 33.06                                                                                                                                                                                                        | ас                                                           |                         |          |                         |        | Ba                                                                                             | asin Lim                                                    | nits                                                                                       |                                                                                                                 |
| Pond Parcel Area                                                                                                                                                                                                   | 10.34                                                                                                                                                                                                        | ас                                                           |                         |          |                         |        | 2043+00                                                                                        | to                                                          | 2091+00                                                                                    |                                                                                                                 |
| Total Area                                                                                                                                                                                                         | 43.4                                                                                                                                                                                                         |                                                              |                         |          |                         |        |                                                                                                |                                                             |                                                                                            |                                                                                                                 |
| CURVE NUMBER CALCUA                                                                                                                                                                                                | TION:                                                                                                                                                                                                        |                                                              |                         |          |                         |        |                                                                                                |                                                             |                                                                                            |                                                                                                                 |
|                                                                                                                                                                                                                    | TYPE A SOIL                                                                                                                                                                                                  | s                                                            | TYPE B SOIL             | s        | TYPE C SOIL             | LS     | TYPE D SOU                                                                                     | us                                                          | CN*A                                                                                       | TOTAL AREA                                                                                                      |
| LAND USE                                                                                                                                                                                                           | AREA (ft <sup>2</sup> )                                                                                                                                                                                      | CN                                                           | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )                                                                        | CN                                                          |                                                                                            |                                                                                                                 |
| mpvervious                                                                                                                                                                                                         | 9.70                                                                                                                                                                                                         | 98                                                           |                         |          |                         |        |                                                                                                |                                                             | 950.30                                                                                     | 9.70                                                                                                            |
| Grass                                                                                                                                                                                                              | 23.36                                                                                                                                                                                                        | 39                                                           |                         |          |                         |        |                                                                                                |                                                             | 911.16<br>403.26                                                                           | 23.36<br>10.34                                                                                                  |
| Pond Site Pre Condition                                                                                                                                                                                            | 10,34                                                                                                                                                                                                        | 39                                                           |                         | -        |                         |        |                                                                                                |                                                             | 403.26                                                                                     | 0.00                                                                                                            |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                              |                         |          |                         |        |                                                                                                |                                                             | 0.00                                                                                       | 0.00                                                                                                            |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                              |                         |          |                         |        |                                                                                                |                                                             | 0.00                                                                                       | 0.00                                                                                                            |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                              |                         |          |                         |        |                                                                                                |                                                             | 0.00                                                                                       | 0.00                                                                                                            |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                              |                         |          |                         |        |                                                                                                |                                                             | 0.00                                                                                       | 0.00                                                                                                            |
|                                                                                                                                                                                                                    |                                                                                                                                                                                                              |                                                              |                         | T -      |                         |        | A                                                                                              |                                                             | 2264.72                                                                                    | 43.4                                                                                                            |
| TOTALS                                                                                                                                                                                                             | 43.4                                                                                                                                                                                                         |                                                              | 0                       |          | 0                       |        | 0                                                                                              |                                                             | 2204.72                                                                                    | the second second second second second second second second second second second second second second second se |
| TOTALS                                                                                                                                                                                                             | 43.4                                                                                                                                                                                                         |                                                              | 0                       |          | 0                       |        | 0<br>WEIGHT                                                                                    | TED CN                                                      | 2204.72                                                                                    | 43.4                                                                                                            |
| Rainfall Depth for 100                                                                                                                                                                                             |                                                                                                                                                                                                              | 16.9                                                         |                         |          | 0                       | Poter  |                                                                                                | on (S) =                                                    | 9.2                                                                                        | the second second second second second second second second second second second second second second second se |
| Rainfall Depth for 100<br>N<br>Runot                                                                                                                                                                               | yr-240hr (P) =                                                                                                                                                                                               |                                                              | in                      |          | 0                       |        | WEIGHT                                                                                         | on (S) =<br>:N) - 10<br>lume =                              | 9.2                                                                                        | the second second second second second second second second second second second second second second second se |
| Rainfall Depth for 100<br>N<br>Runot                                                                                                                                                                               | <b>yr-240hr (P) =</b><br>IOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                              | 9.4                                                          | in                      |          | 0                       |        | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vo                                    | on (S) =<br>:N) - 10<br>lume =                              | 9.2                                                                                        | 52                                                                                                              |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2                                                                                                                                                                | <b>yr-240hr (P) =</b><br>IOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                              | 9.4<br><b>\RAM</b>                                           | in                      |          | 0                       |        | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vo<br>Peak Volume =                   | on (S) =<br>:N) - 10<br>lume =                              | 9.2<br>33.89                                                                               | 52                                                                                                              |
| Rainfall Depth for 100<br>N<br>Runod<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                                         | <b>yr-240hr (P) =</b><br>IOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF PA</b>                                                                                          | 9.4<br>ARAM<br>ac                                            | in                      |          | 0                       |        | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vo<br>Peak Volume =                   | on (S) =<br>:N) - 10<br>lume =<br>= A x Q                   | 9.2<br>33.89                                                                               | 52                                                                                                              |
| Rainfall Depth for 100<br>N<br>Runod<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area                                                                                                                    | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF PA<br>33.06                                                                                                      | 9.4<br>ARAM<br>ac<br>ac                                      | in                      |          | 0                       |        | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba            | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin       | 9.2<br>33.89<br>nits                                                                       | 52                                                                                                              |
| Rainfall Depth for 100<br>N<br>Runoi<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area                                                                                                | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4                                                                                     | 9.4<br>ARAM<br>ac<br>ac                                      | in                      |          | 0                       |        | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba            | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin       | 9.2<br>33.89<br>nits                                                                       | 52                                                                                                              |
| Rainfall Depth for 100<br>N<br>Runoi<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                           | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4                                                                                     | 9.4<br>ARAM<br>ac<br>ac<br>ac                                | in                      | 5        | 0<br>TYPE C SOII        | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba            | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.2<br>33.89<br>nits<br>2091+00                                                            | 52<br>ac-ft                                                                                                     |
| Rainfall Depth for 100<br>N<br>Runoi<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                  | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4                                                                                     | 9.4<br>ARAM<br>ac<br>ac<br>ac<br>ac                          | in<br>IETERS            | LS<br>CN |                         | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to | 9.2<br>33.89<br>nits<br>2091+00.                                                           | 52<br>ac-ft<br>TOTAL AREA                                                                                       |
| Rainfall Depth for 100<br>N<br>Runoi<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                           | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4<br>43.4<br>TION:<br>TYPE A SOII<br>AREA (ft <sup>2</sup> )<br>29.75                 | 9.4<br>ARAM<br>ac<br>ac<br>ac<br>ac<br>cv<br>98              | in<br>IETERS            |          | TYPE C SOIL             | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to  | 9.2<br>33.89<br>nits<br>2091+00.                                                           | 52<br>ac-ft<br>TOTAL AREA<br>29.75                                                                              |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4<br>43.4<br>TION:<br>TYPE A SOII<br>AREA (ft <sup>2</sup> )<br>29.75<br>3.31         | 9.4<br><b>ARAM</b><br>ac<br>ac<br>ac<br>ac<br>cn<br>98<br>39 | in<br>IETERS            |          | TYPE C SOIL             | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to  | 9.2<br>33.89<br>nits<br>2091+00.<br>CN*A<br>2915.70<br>129.01                              | 52<br>ac-ft<br>TOTAL AREA<br>29.75<br>3.31                                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4<br>43.4<br>TION:<br>TYPE A SOII<br>AREA (ft <sup>2</sup> )<br>29.75<br>3.31<br>3.84 | 9.4<br>ARAM<br>ac<br>ac<br>ac<br>ac<br>cN<br>98<br>39<br>39  | in<br>IETERS            |          | TYPE C SOIL             | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to  | 9.2<br>33.89<br>nits<br>2091+00.<br>2915.70<br>129.01<br>149.76                            | 52<br>ac-ft<br>TOTAL AREA<br>29.75<br>3.31<br>3.84                                                              |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4<br>43.4<br>TION:<br>TYPE A SOII<br>AREA (ft <sup>2</sup> )<br>29.75<br>3.31         | 9.4<br><b>ARAM</b><br>ac<br>ac<br>ac<br>ac<br>cn<br>98<br>39 | in<br>IETERS            |          | TYPE C SOIL             | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to  | 9.2<br>33.89<br>nits<br>2091+00.<br>2915.70<br>129.01<br>149.76<br>650.00                  | 52<br>ac-ft<br>29.75<br>3.31<br>3.84<br>6.50                                                                    |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4<br>43.4<br>TION:<br>TYPE A SOII<br>AREA (ft <sup>2</sup> )<br>29.75<br>3.31<br>3.84 | 9.4<br>ARAM<br>ac<br>ac<br>ac<br>ac<br>cN<br>98<br>39<br>39  | in<br>IETERS            |          | TYPE C SOIL             | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to  | 9.2<br>33.89<br>nits<br>2091+00.<br>2915.70<br>129.01<br>149.76<br>650.00<br>0.00          | 52<br>ac-ft<br>29.75<br>3.31<br>3.84<br>6.50<br>0.00                                                            |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4<br>43.4<br>TION:<br>TYPE A SOII<br>AREA (ft <sup>2</sup> )<br>29.75<br>3.31<br>3.84 | 9.4<br>ARAM<br>ac<br>ac<br>ac<br>ac<br>cN<br>98<br>39<br>39  | in<br>IETERS            |          | TYPE C SOIL             | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to  | 9.2<br>33.89<br>nits<br>2091+00.<br>2915.70<br>129.01<br>149.76<br>650.00<br>0.00<br>0.000 | 52<br>ac-ft<br>29.75<br>3.31<br>3.84<br>6.50<br>0.00<br>0.00                                                    |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | yr-240hr (P) =<br>IOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF PA<br>33.06<br>10.34<br>43.4<br>43.4<br>TION:<br>TYPE A SOII<br>AREA (ft <sup>2</sup> )<br>29.75<br>3.31<br>3.84 | 9.4<br>ARAM<br>ac<br>ac<br>ac<br>ac<br>cN<br>98<br>39<br>39  | in<br>IETERS            |          | TYPE C SOIL             | Estima | WEIGHT<br>ntial Abstractio<br>S = (1000/C<br>nted Runoff Vol<br>Peak Volume =<br>Ba<br>2043+00 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lin<br>to  | 9.2<br>33.89<br>nits<br>2091+00.<br>2915.70<br>129.01<br>149.76<br>650.00<br>0.00          | 52<br>ac-ft<br>29.75<br>3.31<br>3.84<br>6.50<br>0.00                                                            |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

Runoff Depth (Q) = 15.4 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

Potential Abstraction (S) = 1.3 S = (1000/CN) - 10

WEIGHTED CN

ac-ft Estimated Runoff Volume = 55.86 Peak Volume = A x Q

89

Pond Name: 30-3 Date: 2/28/2024

### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |           | 33.06 ac              |                 |
|--------------------------------------------------|-----------|-----------------------|-----------------|
| Weighted C                                       |           | 0.87                  |                 |
| Total Impervious                                 | 0.95      | 29.75 ac              |                 |
| Total Pervious                                   |           | 3.31 ac               |                 |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |           | N                     |                 |
| Required Treatment (Runoff from 1" Rainfall)     |           | 2.41 ac-ft ] (which a | lanta araatari  |
| Required Treatment (1/2" over Area)              |           | 1.38 ac-ft            | ver is greater) |
|                                                  |           | 2.41 ac-ft            |                 |
|                                                  |           |                       |                 |
| 2) Estimated Peak Attenuation Volume (EPAV):     |           |                       |                 |
| Existing Runoff Volume                           |           | 33.89 ac-ft           |                 |
| Proposed Runoff Volume                           |           | 55.86 ac-ft           |                 |
| EPAV = Proposed Runoff - Existing Runoff Volum   | e         | 21.98 ac-ft           |                 |
| Floodplain Com                                   | pensation | 5.19 ac-ft            |                 |
| TOTAL                                            | STORAGE   | 24.39 ac-ft           |                 |
| 3) Estimated Pond Configuration:                 |           |                       |                 |
| Maintenance Berm Width                           | 20.0 ft   | Freeboard             | 1.0 ft          |
| L/W Ratio                                        | 2.0       | Side Slopes (1:H)     | 4.0             |
| Aaximum Treatment Volume Depth                   | 1.5 ft    | Wet/Dry               | Dry             |
| Maximum Pond Depth Below Freeboard               | 4.0 ft    | Assumed Control EL    | ft              |
|                                                  |           |                       |                 |
| 4) Estimated Pond Dimensions Including Freeboard |           |                       |                 |

| LTOP OF SLOPE | 768 ft  |
|---------------|---------|
| WTOP OF SLOPE | 384 ft  |
| Area          | 6.77 ac |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 969 ft   |
|-------|----------|
| WSITE | 509 ft   |
| Area  | 11.32 ac |

|     | Pond           | <u>30-3</u> |                |                   |              |
|-----|----------------|-------------|----------------|-------------------|--------------|
|     | <u>Contour</u> | Area        | <u>Storage</u> | Cumulative        | <u>Notes</u> |
| GIS | 71             | 73320       | 0.0            | 0.0               | Soil 15      |
| GIS | 75             | 138750      | 424140.0       | 424140.0          |              |
| GIS | 79             | 184230      | 645960.0       | 1070100.0         |              |
|     |                |             | Cumulative     | Ret (ac-ft) Below | Freeboard    |
|     |                |             |                | 24.57             |              |
|     |                |             |                |                   |              |

| Pond Area |  |
|-----------|--|
| 4.2       |  |
|           |  |

# I-75 Pond Siting

|                         |                                                       |      | FPIC                    | ): 4520       | 74-2-32-01              |       |                                    |           |                |               |
|-------------------------|-------------------------------------------------------|------|-------------------------|---------------|-------------------------|-------|------------------------------------|-----------|----------------|---------------|
|                         |                                                       | P    | ond Name:<br>Date:      | 31-1<br>2/28/ | 2024                    |       | Full                               | Туріса    | al Section Wi  | dth           |
| PRE-DEVELOPMENT RU      | JNOFF PA                                              | RAME | TERS                    |               |                         |       |                                    |           |                |               |
| Onsite Basin Area       | 24.69                                                 | ас   |                         |               |                         |       | E                                  | lasin Lim | its            |               |
| Pond Parcel Area        | 10.65                                                 | ас   |                         |               |                         |       | 2091+00                            | to        | 2126+80        |               |
| Total Area              | 35.34                                                 | ас   |                         |               |                         |       |                                    |           |                |               |
| CURVE NUMBER CALCUA     | TION:                                                 |      |                         |               |                         |       |                                    |           |                |               |
|                         | TYPE A SO                                             | LS   | TYPE B SO               | ILS           | TYPE C SO               | ILS   | TYPE D SC                          | ILS       | CN*A           | TOTAL AREA    |
| LAND USE                | AREA (ft <sup>2</sup> )                               | CN   | AREA (ft <sup>2</sup> ) | CN            | AREA (ft <sup>2</sup> ) | CN    | AREA (ft <sup>2</sup> )            | CN        |                |               |
| Impvervious             | 7.23                                                  | 98   |                         |               |                         |       |                                    |           | 708.77         | 7.23          |
| Grass                   | 17.46                                                 | 39   |                         |               |                         |       |                                    | +         | 680.85         | 17.46         |
| Pond Site Pre Condition | 10.65                                                 | 39   |                         |               |                         |       |                                    | +         | 415.35<br>0.00 | 10.65<br>0.00 |
|                         | _                                                     |      |                         |               |                         |       |                                    |           | 0.00           | 0.00          |
|                         |                                                       | -    |                         |               |                         | + +   |                                    | +         | 0.00           | 0.00          |
|                         |                                                       |      |                         |               |                         | + +   | _                                  | +         | 0.00           | 0.00          |
|                         |                                                       |      |                         |               |                         |       |                                    |           | 0.00           | 0.00          |
| TOTALS                  | 35.34                                                 | -    | 0                       |               | 0                       |       | 0                                  |           | 1804.97        | 35.34         |
| 101/10                  | 00.01                                                 |      |                         |               |                         |       | WEIGH                              | TED CN    |                | 51            |
| Rainfall Depth for 100  | <b>yr-240hr (P) =</b><br>NOAA Atlas 14                |      | in                      |               |                         | Poten | tial Abstracti<br>S = (1000/       |           | 9.6            |               |
|                         | <b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S) |      | in                      |               |                         |       | <b>ted Runoff V</b><br>Peak Volume |           | 26.92          | əc-ft         |
| POST-DEVELOPMENT        | RUNOFF P                                              | ARAN | IETERS                  |               |                         |       |                                    |           |                |               |
| Onsite Basin Area       | 24.69                                                 | ac   |                         |               |                         |       | E                                  | Basin Lim | nits           |               |
| Pond Parcel Area        | 10.65                                                 | ac   |                         |               |                         |       | 2091+00                            | to        | 2126+80        |               |
| Total Area              | 35.34                                                 | ac   |                         |               |                         |       |                                    |           |                |               |
| CURVE NUMBER CALCUA     | TION:                                                 |      |                         |               |                         |       |                                    |           |                |               |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | TYPE A SOILS            |          | TYPE B SOILS            |    | TYPE C SOILS            |    | TYPE D SOILS            |        | CN*A    | TOTAL AREA  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------|-------------------------|----|-------------------------|----|-------------------------|--------|---------|-------------|
| LAND USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | AREA (ft <sup>2</sup> ) | CN       | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> ) | CN     |         | TOTAL PAREN |
| Impervious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 22.19                   | 98       |                         |    |                         |    |                         |        | 2174.63 | 22.19       |
| And a state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the state of the | 2.50                    | 39       |                         |    | 1                       |    |                         |        | 97.50   | 2.50        |
| Grass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.85                    | 39       |                         |    |                         |    |                         |        | 111.15  | 2.85        |
| Pond Site (Pervious)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 7.80                    | 100      |                         |    |                         |    |                         |        | 780.00  | 7.80        |
| Pond Site (Impervious)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 7.00                    | - ANNO   |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         |          |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                       | +        |                         |    |                         |    |                         |        | 0.00    | 0.00        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                         | +        |                         |    |                         |    |                         |        | 0.00    | 0.00        |
| TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 35.34                   | ++       | 0                       |    | 0                       |    | 0                       |        | 3163.27 | 35.34       |
| TUTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 55.54                   | <u> </u> |                         |    |                         |    | WEIGH                   | TED CN |         | 90          |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> Runoff Depth (Q) = 15.6 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$

Potential Abstraction (S) = 1.2 S = (1000/CN) - 10

Estimated Runoff Volume = 45.86 ac-ft Peak Volume = A x Q

Pond Name: 31-1 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |         | 24.69 ac           |                |
|--------------------------------------------------|---------|--------------------|----------------|
| Weighted C                                       |         | 0.87               |                |
| Total Impervious                                 | 0.95    | 22.19 ac           |                |
| Total Pervious                                   | 0.20    | 2.50 ac            |                |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |         | N                  |                |
| Required Treatment (Runoff from 1" Rainfall)     |         | 1.80 ac-ft         | er is greater) |
| Required Treatment (1/2" over Area)              |         | 1.03 ac-ft         | er is greater) |
|                                                  |         | 1.80 ac-ft         |                |
| 2) Estimated Peak Attenuation Volume (EPAV):     |         |                    |                |
| Existing Runoff Volume                           |         | 26.92 ac-ft        |                |
| Proposed Runoff Volume                           |         | 45.86 ac-ft        |                |
| EPAV = Proposed Runoff - Existing Runoff Volum   | e       | 18.94 ac-ft        |                |
| TOTAL                                            | STORAGE | 20.73 ac-ft        |                |
| 3) Estimated Pond Configuration:                 |         |                    |                |
| Maintenance Berm Width                           | 20.0 ft | Freeboard          | 1.0 ft         |
| L/W Ratio                                        | 2.0     | Side Slopes (1:H)  | 4.0            |
| Maximum Treatment Volume Depth                   | 1.5 ft  | Wet/Dry            | Dry            |
| Maximum Pond Depth Below Freeboard               | 7.0 ft  | Assumed Control EL | ft             |
| 4) Estimated Pond Dimensions Including Freeboard |         |                    |                |
| .,                                               |         |                    |                |

| LTOP OF SLOPE | 554 ft  |
|---------------|---------|
| WTOP OF SLOPE | 277 ft  |
| Area          | 3.53 ac |

| LSITE | 713 ft  |
|-------|---------|
| WSITE | 381 ft  |
| Area  | 6.23 ac |

|     | <u>Contour</u> | Area   | <u>Storage</u> | Cumulative       | <u>Notes</u> |
|-----|----------------|--------|----------------|------------------|--------------|
| GIS | 67             | 48650  | 0.0            | 0.0              | Soil 15      |
| GIS | 70             | 135640 | 276435.0       | 276435.0         |              |
| GIS | 74             | 184230 | 639740.0       | 916175.0         |              |
|     |                |        | Cumulative     | Ret (ac-ft) Belo | w Freeboard  |
|     |                |        |                | 21.03            |              |
|     |                |        |                |                  |              |
|     |                |        |                | Pond Area        |              |
| ,   |                |        |                | 4.2              | 602527       |
|     |                |        |                |                  | 13.83212     |

Pond <u>31-1</u>

a.

# I-75 Pond Siting

### FPID: 452074-2-32-01

|                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                    | Date:                   | 2/28/     | 2024                    |        |                                                                                 |                                                             |                                                                                    |                                                                     |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-------------------------|-----------|-------------------------|--------|---------------------------------------------------------------------------------|-------------------------------------------------------------|------------------------------------------------------------------------------------|---------------------------------------------------------------------|
| PRE-DEVELOPMENT RU                                                                                                                                                                  | JNOFF PA                                                                                                                                                                                                                          | RAME                                                               | TERS                    |           |                         |        |                                                                                 |                                                             |                                                                                    |                                                                     |
| Onsite Basin Area                                                                                                                                                                   | 24.69                                                                                                                                                                                                                             | ac                                                                 |                         |           |                         |        | В                                                                               | asin Lim                                                    | nits                                                                               |                                                                     |
| Pond Parcel Area                                                                                                                                                                    | 11.92                                                                                                                                                                                                                             | ac                                                                 |                         |           |                         | 1      | 2091+00                                                                         | to                                                          | 2126+80                                                                            |                                                                     |
| Fotal Area                                                                                                                                                                          | 36.61                                                                                                                                                                                                                             |                                                                    |                         |           |                         |        | AND COMPANY                                                                     | 01. <sup>(1</sup> )                                         | - managements                                                                      |                                                                     |
| CURVE NUMBER CALCUA                                                                                                                                                                 | TION:                                                                                                                                                                                                                             |                                                                    |                         |           |                         |        |                                                                                 |                                                             |                                                                                    |                                                                     |
|                                                                                                                                                                                     | TYPE A SO                                                                                                                                                                                                                         | LS                                                                 | TYPE B SO               | ILS       | TYPE C SO               | ILS    | TYPE D SOI                                                                      | LS                                                          |                                                                                    |                                                                     |
| LAND USE                                                                                                                                                                            | AREA (ft <sup>2</sup> )                                                                                                                                                                                                           | CN                                                                 | AREA (ft <sup>2</sup> ) | CN        | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )                                                         | CN                                                          | CN*A                                                                               | TOTAL AREA                                                          |
| Impvervious                                                                                                                                                                         | 7.23                                                                                                                                                                                                                              | 98                                                                 |                         |           |                         |        |                                                                                 |                                                             | 708.77                                                                             | 7.23                                                                |
| Grass                                                                                                                                                                               | 17.46                                                                                                                                                                                                                             | 39                                                                 |                         |           |                         |        |                                                                                 |                                                             | 680.85                                                                             | 17.4                                                                |
| Pond Site Pre Condition                                                                                                                                                             | 11.92                                                                                                                                                                                                                             | 39                                                                 |                         |           |                         |        |                                                                                 |                                                             | 464.88                                                                             | 11.9                                                                |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                    |                         |           |                         |        |                                                                                 |                                                             | 0.00                                                                               | 0.0                                                                 |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                    |                         |           |                         |        |                                                                                 |                                                             | 0.00                                                                               | 0.00                                                                |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                    |                         |           |                         |        |                                                                                 |                                                             | 0.00                                                                               | 0.00                                                                |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                    |                         |           |                         |        |                                                                                 |                                                             | 0.00                                                                               | 0.0                                                                 |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                    |                         |           |                         |        |                                                                                 |                                                             | 0.00                                                                               | 0.0                                                                 |
| TOTALS                                                                                                                                                                              | 36.61                                                                                                                                                                                                                             |                                                                    | 0                       |           | 0                       |        | 0                                                                               |                                                             | 1854.50                                                                            | 36.6                                                                |
|                                                                                                                                                                                     |                                                                                                                                                                                                                                   |                                                                    |                         |           |                         |        |                                                                                 |                                                             |                                                                                    |                                                                     |
| Runo                                                                                                                                                                                | NOAA Atlas 14<br>off Depth (Q) =                                                                                                                                                                                                  | 9.1                                                                |                         |           |                         |        | WEIGH<br>tial Abstraction<br>S = (1000/C<br>ted Runoff Vo                       | on (S) =<br>CN) - 10                                        | 9.7<br>27.62 a                                                                     | 5:<br>ac-ft                                                         |
| Runo<br>Q = (P - 0.2                                                                                                                                                                | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                                                                            | 9.1                                                                | in                      | ×         |                         |        | tial Abstractio<br>S = (1000/C                                                  | on (S) =<br>CN) - 10<br>Iume =                              |                                                                                    |                                                                     |
| Runo<br>Q = (P - 0.2                                                                                                                                                                | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b>                                                                                                                                         | 9.1<br>ARAN                                                        | in                      | ø         |                         |        | <b>tial Abstractio</b><br>S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume    | on (S) =<br>CN) - 10<br>Iume =                              | 27.62 a                                                                            |                                                                     |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT I<br>Onsite Basin Area                                                                                                                     | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                                                                            | 9.1<br>ARAN<br>ac                                                  | in                      | ×         |                         |        | <b>tial Abstractio</b><br>S = (1000/C<br><b>ted Runoff Vo</b><br>Peak Volume    | on (S) =<br>CN) - 10<br>Iume =<br>= A x Q                   | 27.62 a                                                                            |                                                                     |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area                                                                                                  | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69                                                                                                                                | 9.1<br>ARAN<br>ac<br>ac                                            | in                      | 8         |                         |        | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B            | on (S) =<br>CN) - 10<br>Iume =<br>= A x Q<br>asin Lin       | 27.62 a                                                                            |                                                                     |
| Runo<br>Q = (P - 0.1<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                   | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61                                                                                                              | 9.1<br>ARAN<br>ac<br>ac                                            | in                      | ×         |                         |        | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B            | on (S) =<br>CN) - 10<br>Iume =<br>= A x Q<br>asin Lin       | 27.62 a                                                                            |                                                                     |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT I<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                             | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61                                                                                                              | 9.1<br>ARAN<br>ac<br>ac<br>ac                                      | in                      |           | TYPE C SO               | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B            | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>nits<br>2126+80                                                         | ac-ft                                                               |
| Runo<br>Q = (P - 0.1<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                   | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b>                                                                         | 9.1<br>ARAN<br>ac<br>ac<br>ac                                      | in<br>IETERS            | ILS<br>CN |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a                                                                            |                                                                     |
| Runo<br>Q = (P - 0.1<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b><br><b>AREA (ft<sup>2</sup>)</b>                                         | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac                                | in<br><b>1ETERS</b>     |           | TYPE C SO<br>AREA (ft²) | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>nits<br>2126+80                                                         | ac-ft<br>Total Area                                                 |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious                                  | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b>                                                                         | 9.1<br>ARAN<br>ac<br>ac<br>ac                                      | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>nits<br>2126+80                                                         | DC-ft<br>TOTAL AREA<br>22.1                                         |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass                         | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b><br><b>AREA (ft<sup>2</sup>)</b><br>22.19                                | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>cN<br>98                    | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>nits<br>2126+80<br>CN*A<br>2174.63                                      | ac-ft                                                               |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b><br><b>AREA (ft<sup>2</sup>)</b><br>22.19<br>2.50                        | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>cn<br>98<br>39              | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>nits<br>2126+80<br>CN*A<br>2174.63<br>97.50                             | TOTAL AREA<br>22.1<br>2.5                                           |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass                         | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b><br><b>AREA (ft<sup>2</sup>)</b><br>22.19<br>2.50<br><b>2.85</b>         | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ILS<br>CN<br>98<br>39<br>39 | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>hits<br>2126+80<br>CN*A<br>2174.63<br>97.50<br>111.15                   | TOTAL AREA<br>22.1<br>2.5<br>2.8                                    |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b><br><b>AREA (ft<sup>2</sup>)</b><br>22.19<br>2.50<br><b>2.85</b>         | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ILS<br>CN<br>98<br>39<br>39 | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>nits<br>2126+80<br>CN*A<br>2174.63<br>97.50<br>111.15<br>907.00         | TOTAL AREA<br>22.1<br>2.5<br>2.8<br>9.0<br>0.0                      |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b><br><b>AREA (ft<sup>2</sup>)</b><br>22.19<br>2.50<br><b>2.85</b>         | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ILS<br>CN<br>98<br>39<br>39 | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>hits<br>2126+80<br>2174.63<br>97.50<br>111.15<br>907.00<br>0.00         | TOTAL AREA<br>22.1<br>2.5<br>2.8<br>9.0<br>0.0<br>0.0               |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>ATION:</b><br><b>TYPE A SO</b><br><b>AREA (ft<sup>2</sup>)</b><br>22.19<br>2.50<br><b>2.85</b>         | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ILS<br>CN<br>98<br>39<br>39 | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>hits<br>2126+80<br>2174.63<br>97.50<br>1111.5<br>907.00<br>0.000        | TOTAL AREA<br>22.1<br>2.5<br>2.8<br>9.0                             |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Impervious<br>Grass<br>Pond Site (Pervious) | NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>24.69<br>11.92<br>36.61<br><b>XTION:</b><br><b>TYPE A 50</b><br><b>AREA (ft<sup>2</sup>)</b><br>22.19<br>2.50<br><b>2.85</b><br>9.07 | 9.1<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ILS<br>CN<br>98<br>39<br>39 | in<br>IETERS            |           |                         | Estima | tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2091+00 | on (S) =<br>CN) - 10<br>Jume =<br>= A x Q<br>asin Lin<br>to | 27.62 a<br>hits<br>2126+80<br>2174.63<br>97.50<br>1111.5<br>907.00<br>0.00<br>0.00 | TOTAL AREA<br>22.1<br>2.5<br>2.8<br>9.0<br>0.0<br>0.0<br>0.0<br>0.0 |

Runoff Depth (Q) = 15.6 in  $Q = (P - 0.2S)^2 / (P + 0.8S)$ 

Estimated Runoff Volume = 47.65 ac-ft Peak Volume = A x Q

# Pond Name: 31-2 Date: 2/28/2024

# POND SIZING ESTIMATION

2)

3)

4)

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

|         | Area Inside R/W                           |          |         | 24.69 ac     |                                   |               |  |  |  |
|---------|-------------------------------------------|----------|---------|--------------|-----------------------------------|---------------|--|--|--|
|         | Weighted C                                |          |         | 0.87         |                                   |               |  |  |  |
|         | Total Impe                                | ervious  | 0.95    | 22.19 ac     |                                   |               |  |  |  |
|         | Total Pe                                  | ervious  | 0.20    | 2.50 ac      |                                   |               |  |  |  |
|         | Outstanding FL Water (Y/N)[multiply x 1.5 | ]        |         | N            |                                   |               |  |  |  |
|         | Required Treatment (Runoff from 1" Rainf  |          |         | 1.80 ac-ft   | (which eve                        | r is greater) |  |  |  |
|         | Required Treatment (1/2" over Area)       |          |         | 1.03 ac-ft ∫ | 1.03 ac-ft (whichever is greater) |               |  |  |  |
|         |                                           |          |         | 1.80 ac-ft   |                                   |               |  |  |  |
| ) Estir | nated Peak Attenuation Volume (EPAV):     |          |         |              |                                   |               |  |  |  |
|         | Existing Runoff Volume                    |          |         | 27.62 ac-ft  |                                   |               |  |  |  |
|         | Proposed Runoff Volume                    |          |         | 47.65 ac-ft  |                                   |               |  |  |  |
|         | EPAV = Proposed Runoff - Existing Runoff  | Volume   |         | 20.03 ac-ft  |                                   |               |  |  |  |
|         | 1                                         | TOTAL ST | ORAGE   | 21.83 ac-ft  |                                   |               |  |  |  |
| ) Estir | nated Pond Configuration:                 |          |         |              |                                   |               |  |  |  |
|         | Maintenance Berm Width                    |          | 20.0 ft | Freeboard    | ı I                               | 1.0 ft        |  |  |  |
|         | L/W Ratio                                 |          | 2.0     | Side Slope   | es (1:H)                          | 4.0           |  |  |  |
|         | Maximum Treatment Volume Depth            |          | 1.5 ft  | Wet/Dry      |                                   | Dry           |  |  |  |
|         | Maximum Pond Depth Below Freeboard        | 1        | 7.0 ft  | Assumed      | Control EL                        | ft            |  |  |  |
| ) Estir | nated Pond Dimensions Including Freeboar  | rd       |         |              |                                   |               |  |  |  |
|         |                                           |          |         |              |                                   |               |  |  |  |

| LTOP OF SLOPE | 568  | ft |
|---------------|------|----|
| WTOP OF SLOPE | 284  | ft |
| Area          | 3.70 | ac |

| LSITE | 729 ft  |
|-------|---------|
| WSITE | 389 ft  |
| Area  | 6.51 ac |

|     | Pond                                   | <u>31-2</u> | •                        |  |  |  |  |  |
|-----|----------------------------------------|-------------|--------------------------|--|--|--|--|--|
|     | <u>Contour</u>                         | Area        | Storage Cumulative Notes |  |  |  |  |  |
| GIS | 68                                     | 66230       | 0.0 0.0 Soil 15          |  |  |  |  |  |
| GIS | 73                                     | 134230      | 501150.0 501150.0        |  |  |  |  |  |
| GIS | 77                                     | 175420      | 619300.0 1120450.0       |  |  |  |  |  |
|     | Cumulative Ret (ac-ft) Below Freeboard |             |                          |  |  |  |  |  |
|     |                                        |             | 25.72                    |  |  |  |  |  |

Pond Area 4.0

# I-75 Pond Siting

|                         |                                                                                                |            |                         |               | 74-2-32-01              |    |                                                                    |                  |               |            |
|-------------------------|------------------------------------------------------------------------------------------------|------------|-------------------------|---------------|-------------------------|----|--------------------------------------------------------------------|------------------|---------------|------------|
|                         |                                                                                                | P          | ond Name<br>Date        | 31-3<br>2/28/ | 2024                    |    | Full                                                               | Typica           | al Section Wi | dth        |
| PRE-DEVELOPMENT RU      | JNOFF PA                                                                                       | RAME       | TERS                    |               |                         |    |                                                                    |                  |               |            |
| Onsite Basin Area       | 24.69                                                                                          | ac I       |                         |               |                         |    | B                                                                  | asin Lim         | its           |            |
| Pond Parcel Area        | 10.39                                                                                          | ac ac      |                         |               |                         |    | 2091+00                                                            | to               | 2126+80       |            |
| Total Area              | 35.08                                                                                          | вас        |                         |               |                         |    |                                                                    |                  |               |            |
| CURVE NUMBER CALCUA     | TION:                                                                                          |            |                         |               |                         |    |                                                                    |                  |               |            |
|                         | TYPE A SO                                                                                      | ILS        | TYPE B SC               | DILS .        | TYPE C SO               | LS | TYPE D SO                                                          | ILS              | CN*A          | TOTAL AREA |
| LAND USE                | AREA (ft <sup>2</sup> )                                                                        | CN         | AREA (ft <sup>2</sup> ) | CN            | AREA (ft <sup>2</sup> ) | CN | AREA (ft <sup>2</sup> )                                            | CN               |               |            |
| Impvervious             | 7.23                                                                                           | 98         |                         |               |                         |    |                                                                    |                  | 708.77        | 7.23       |
| Grass                   | 17.46                                                                                          | 39         |                         |               | -                       | -  |                                                                    | $ \rightarrow $  | 680.85        | 17.46      |
| Pond Site Pre Condition | 10.39                                                                                          | 39         |                         |               |                         |    |                                                                    |                  | 405.21        | 0.00       |
|                         |                                                                                                |            |                         |               |                         |    |                                                                    | $\left  \right $ | 0.00          | 0.00       |
|                         |                                                                                                |            |                         |               |                         |    |                                                                    |                  | 0.00          | 0.00       |
|                         |                                                                                                |            |                         |               |                         |    |                                                                    |                  | 0.00          | 0.00       |
|                         |                                                                                                |            |                         | +             |                         | -  |                                                                    |                  | 0.00          | 0.00       |
| TOTALS                  | 35.08                                                                                          | -          | 0                       | +             | 0                       |    | 0                                                                  |                  | 1794.83       | 35.08      |
| 101/10                  |                                                                                                |            |                         |               |                         |    | WEIGH                                                              | TED CN           |               | 51         |
| Runo                    | <b>yr-240hr (P)</b> =<br>NOAA Atlas 14<br><b>ff Depth (Q)</b> =<br>2S) <sup>2</sup> /(P + 0.8S | 1<br>= 9.2 |                         |               |                         |    | ntial Abstraction<br>S = (1000/0<br>Inted Runoff Vo<br>Peak Volume | CN) - 10         | 9.5<br>26.78  | ac-ft      |
| POST-DEVELOPMENT        | RUNOFF P                                                                                       | ARAN       | IETERS                  |               |                         |    | R                                                                  | asin Lim         | iits          |            |
| Onsite Basin Area       | 24.65                                                                                          |            |                         |               |                         |    |                                                                    | f 11             | 2126+80       |            |
| Pond Parcel Area        | 10.3                                                                                           | ac         |                         |               |                         |    | 2091+00                                                            | to               | 2120+00       |            |
| Total Area              | 35.08                                                                                          | 8 ac       |                         |               |                         |    |                                                                    |                  |               |            |

### **CURVE NUMBER CALCUATION:**

|                        | TYPE A SOILS                                                                          |                   | TYPE B SOILS |                            | TYPE C SOILS |             | TYPE D SOILS |        | CN*A    | TOTAL AREA |
|------------------------|---------------------------------------------------------------------------------------|-------------------|--------------|----------------------------|--------------|-------------|--------------|--------|---------|------------|
| LAND USE               | DUSE AREA (ft <sup>2</sup> ) CN AREA (ft <sup>2</sup> ) CN AREA (ft <sup>2</sup> ) CN |                   | CN           | AREA (ft <sup>2</sup> ) CN |              | di A        | TOTAL ALLA   |        |         |            |
| Impervious             | 22.19                                                                                 | 98                |              |                            |              |             |              |        | 2174.63 | 22.19      |
|                        | 2.50                                                                                  | 39                |              |                            |              |             |              |        | 97.50   | 2.50       |
| Grass                  | 2.85                                                                                  | 39                |              |                            |              |             |              |        | 111.15  | 2.85       |
| Pond Site (Pervious)   |                                                                                       | Comparison of the |              |                            |              |             |              |        | 754.00  | 7.54       |
| Pond Site (Impervious) | 7.54                                                                                  | 100               |              |                            |              |             |              | ++     | 0.00    | 0.00       |
|                        |                                                                                       | ++                |              |                            |              |             |              |        | 0.00    | 0.00       |
|                        |                                                                                       | + +               |              |                            |              |             |              |        | 0.00    | 0.00       |
|                        |                                                                                       | +                 |              |                            |              |             |              |        | 0.00    | 0.00       |
| TOTALS                 | 35.08                                                                                 | +                 | 0            |                            | 0            |             | 0            | 1 1    | 3137.27 | 35.08      |
| TOTALS                 | 55.00                                                                                 |                   |              | L                          |              | december of | WEIGH        | TED CN |         | 89         |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 15.6 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (\$) = 1.2 S = (1000/CN) - 10

Estimated Runoff Volume = 45.49 ac-ft Peak Volume = A x Q

Pond Name: 31-3 Date: 2/28/2024

### POND SIZING ESTIMATION

### 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                 |                             |               | 24.69 ac                     |                 |  |  |  |
|---------------------------------|-----------------------------|---------------|------------------------------|-----------------|--|--|--|
| Weighted C                      |                             |               | 0.87                         |                 |  |  |  |
| -                               | Total Impervious            | 0.95          | 22.19 ac                     |                 |  |  |  |
|                                 | Total Pervious              | 0.20          | 2.50 ac                      |                 |  |  |  |
| Outstanding FL Water (          | Y/N}[multiply x 1.5]        |               | N                            |                 |  |  |  |
| Required Treatment (R           | unoff from 1" Rainfall)     |               | 1.80 ac-ft [ (whichou        | ver is greater) |  |  |  |
| Required Treatment (1,          | /2" over Area)              | 1.03 ac-ft    | er is greater)               |                 |  |  |  |
|                                 |                             |               | 1.80 ac-ft                   |                 |  |  |  |
| 2) Estimated Peak Attenuation   | Volume (EPAV):              |               |                              |                 |  |  |  |
| Existing Runoff Volume          |                             |               | 26.78 ac-ft                  |                 |  |  |  |
| Proposed Runoff Volun           | ne                          |               | 45.49 ac-ft                  |                 |  |  |  |
| EPAV = Proposed Runo            | ff - Existing Runoff Volume |               | 18.71 ac-ft                  |                 |  |  |  |
|                                 | TOTAL S                     | TORAGE        | 20.51 ac-ft                  |                 |  |  |  |
| B) Estimated Pond Configuration | n:                          |               |                              |                 |  |  |  |
| Maintenance Berm Wid            | ith                         | 20.0 ft       | Freeboard                    | 1.0 ft          |  |  |  |
| Maintenance berni wit           |                             | 1000          |                              | 4.0             |  |  |  |
| L/W Ratio                       |                             | 2.0           | Side Slopes (1:H)            | 4.0             |  |  |  |
|                                 | olume Depth                 | 2.0<br>1.5 ft | Side Slopes (1:H)<br>Wet/Dry | Dry             |  |  |  |

4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 552 ft  |
|---------------|---------|
| WTOP OF SLOPE | 276 ft  |
| Area          | 3.49 ac |

| LSITE | 710 ft  |
|-------|---------|
| WSITE | 379 ft  |
| Area  | 6.18 ac |

|                   | Pond                             | <u>31-3</u>                              |                                                                                                                                                                                                                                                           |  |
|-------------------|----------------------------------|------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| GIS<br>GIS<br>GIS | <u>Contour</u><br>77<br>82<br>86 | <u>Area</u><br>54320<br>118760<br>171230 | Storage         Cumulative         Notes           0.0         0.0         Soil 15           432700.0         432700.0         579980.0           579980.0         1012680.0         Cumulative Ret (ac-ft) Below Freeboard           23.25         23.25 |  |
|                   |                                  |                                          | Pond Area                                                                                                                                                                                                                                                 |  |

3.9

602527 13.83212

7

# POND SIZING CALCULATIONS

# I-75 Pond Siting

# FPID: 452074-2-32-01

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           | P                                                           | ond Name:               | 32-1                     |                         |        | Full                                                                                                   | Typica                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | al Section Wi                                                                                        | dth                                                                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------|--------------------------|-------------------------|--------|--------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                             | Date:                   | 2/28/3                   | 2024                    |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                             |
| PRE-DEVELOPMENT RU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | JNOFF PA                                                                                                                                                                                  | RAME                                                        | TERS                    |                          |                         |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                             |
| Insite Basin Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 31.28                                                                                                                                                                                     |                                                             |                         |                          |                         |        | В                                                                                                      | asin Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | its                                                                                                  |                                                                             |
| ond Parcel Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 6.62                                                                                                                                                                                      |                                                             |                         |                          |                         | 1      | 2126+80                                                                                                | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2159+00                                                                                              |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                             |                         |                          |                         | 4      | 6.160.100                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                             |
| otal Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 37.9                                                                                                                                                                                      | ас                                                          |                         |                          |                         |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                             |
| URVE NUMBER CALCUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TION:                                                                                                                                                                                     |                                                             |                         |                          |                         |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                      |                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | TYPE A SO                                                                                                                                                                                 | ILS                                                         | TYPE B SO               | LS                       | TYPE C SOI              | LS     | TYPE D SO                                                                                              | ILS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | CN*A                                                                                                 | TOTAL AREA                                                                  |
| LAND USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | AREA (ft <sup>2</sup> )                                                                                                                                                                   | CN                                                          | AREA (ft <sup>2</sup> ) | CN                       | AREA (ft <sup>2</sup> ) | CN     | AREA (ft <sup>2</sup> )                                                                                | CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | CN A                                                                                                 | TOTALANEA                                                                   |
| mpvervious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 6.51                                                                                                                                                                                      | 98                                                          |                         |                          |                         |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 637.49                                                                                               | 6.5                                                                         |
| irass                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 24.77                                                                                                                                                                                     | 39                                                          |                         |                          |                         |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 966.22                                                                                               | 24.7                                                                        |
| ond Site Pre Condition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 6.62                                                                                                                                                                                      | 39                                                          |                         | $ \downarrow \downarrow$ |                         |        |                                                                                                        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 258.18                                                                                               | 6.6                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                             |                         | + +                      |                         |        |                                                                                                        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                 | 0.0                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                             |                         | $\vdash$                 |                         |        |                                                                                                        | $\vdash$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0.00                                                                                                 | 0.0                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                             |                         |                          |                         |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                 | 0.0                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                             |                         |                          |                         |        |                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 0.00                                                                                                 | 0.0                                                                         |
| TOTALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 37.9                                                                                                                                                                                      |                                                             | 0                       |                          | 0                       |        | 0                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1861.90                                                                                              | 37.                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                           |                                                             |                         |                          |                         |        | WEIGH                                                                                                  | TED CN                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                      | 4                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | NOAA Atlas 14                                                                                                                                                                             |                                                             |                         |                          |                         |        | tial Abstractio<br>S = (1000/0                                                                         | on (S) =<br>CN) - 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10.4                                                                                                 |                                                                             |
| Runo<br>Q = (P - 0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                                    | 8.7                                                         | in                      |                          |                         | Estima | tial Abstraction                                                                                       | on (S) =<br>CN) - 10<br>Hume =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                      | -<br>əc-ft                                                                  |
| Runo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)                                                                                                                    | 8.7<br>ARAN                                                 | in                      |                          |                         | Estima | <b>tial Abstractio</b><br>S = (1000/0<br><b>ted Runoff Vo</b><br>Peak Volume                           | on (S) =<br>CN) - 10<br>Hume =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 27.58                                                                                                |                                                                             |
| ۲<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b> ,                                                                                               | 8.7<br>ARAN                                                 | in                      |                          |                         | Estima | <b>tial Abstractio</b><br>S = (1000/0<br><b>ted Runoff Vo</b><br>Peak Volume                           | on (S) =<br>CN) - 10<br>elume =<br>= A x Q                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 27.58                                                                                                |                                                                             |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b> .<br>31.28<br>6.52                                                                              | 8.7<br>ARAN<br>ac<br>ac                                     | in                      |                          |                         | Estima | tial Abstractic<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B                                    | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.58                                                                                                |                                                                             |
| Runo<br>Q = (P - 0.1<br>POST-DEVELOPMENT F<br>Donsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.85)<br><b>RUNOFF P</b><br>31.28<br>6.62<br>37.9                                                                        | 8.7<br>ARAN<br>ac<br>ac                                     | in                      |                          |                         | Estima | tial Abstractic<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B                                    | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 27.58                                                                                                |                                                                             |
| Runo<br>Q = (P - 0.1<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>31.28<br>6.62<br>37.9<br>ATION:                                                                           | ac<br>ac<br>ac                                              | in<br>1ETERS            | 115 1                    | TYDE C CAI              | Estima | tial Abstraction<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80                        | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58                                                                                                |                                                                             |
| Runo<br>Q = (P - 0.1<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>31.28<br>6.62<br>37.9<br><b>XTION:</b><br><b>TYPE A SO</b>                                   | 8.7<br>ARAN<br>ac<br>ac<br>ac                               | in<br>IETERS            | r +                      | TYPE C SO               | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58                                                                                                |                                                                             |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcei Area<br>Total Area<br>CURVE NUMBER CALCUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P,<br>31.28<br>6.62<br>37.9<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                                   | ac<br>ac<br>ac                                              | in<br>1ETERS            | LS<br>CN                 | TYPE C SO<br>AREA (ft²) | Estima | tial Abstraction<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80                        | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58<br>its<br>2159+00                                                                              | ac-ft                                                                       |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | NOAA Atlas 14<br><b>ff Depth (Q) =</b><br>2S) <sup>2</sup> /(P + 0.8S)<br><b>RUNOFF P</b><br>31.28<br>6.62<br>37.9<br><b>XTION:</b><br><b>TYPE A SO</b>                                   | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac                         | in<br>IETERS            | r +                      |                         | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58<br>iits<br>2159+00                                                                             | ac-ft<br>Total Area                                                         |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcei Area<br>Potal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Manuel<br>Ma | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P,<br>31.28<br>6.62<br>37.9<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96                          | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>c<br>N<br>98   | in<br>IETERS            | r +                      |                         | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58<br>its<br>2159+00<br>CN*A<br>1955.95                                                           | TOTAL AREA<br>19.9<br>11.3                                                  |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcei Area<br>Potal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Manuel<br>Manuel<br>CURVE NUMBER CALCUA<br>LAND USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P,<br>31.28<br>6.62<br>37.9<br>XTION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32                 | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>cn<br>98<br>39 | in<br>IETERS            | r +                      |                         | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58<br>its<br>2159+00<br>CN*A<br>1955.95<br>441.53<br>102.18<br>400.00                             | TOTAL AREA<br>19.9<br>11.3<br>2.6<br>4.0                                    |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcei Area<br>Potal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Manuel<br>Manuel<br>CURVE NUMBER CALCUA<br>LAND USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>31.28<br>6.62<br>37.9<br>XTION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>2.62          | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac                   | in<br>IETERS            | r +                      |                         | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58<br>its<br>2159+00<br>CN*A<br>1955.95<br>441.53<br>102.18<br>400.00<br>400.00                   | TOTAL AREA<br>19.9<br>11.3<br>2.6<br>4.0<br>0.0                             |
| Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcei Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Manager Content<br>LAND USE                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>31.28<br>6.62<br>37.9<br>XTION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>2.62          | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac                   | in<br>IETERS            | r +                      |                         | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58<br>its<br>2159+00<br>CN*A<br>1955.95<br>441.53<br>102.18<br>400.00<br>400.00<br>0.000          | TOTAL AREA<br>19.9<br>11.3<br>2.6<br>4.0<br>0.0<br>0.0                      |
| Runo<br>Q = (P - 0.<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>31.28<br>6.62<br>37.9<br>XTION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>2.62          | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac                   | in<br>IETERS            | r +                      |                         | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58<br>its<br>2159+00<br>CN*A<br>1955.95<br>441.53<br>102.18<br>400.00<br>400.00<br>0.000<br>0.000 | TOTAL AREA<br>19.9<br>11.3<br>2.6<br>4.0<br>0.0<br>0.0<br>0.0               |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>Pond Parcel Area<br>Total Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Margervious<br>Frass<br>Pond Site (Pervious)<br>Pond Site (Impervious)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>31.28<br>6.62<br>37.9<br>ATION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>2.62<br>4.00 | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac                   | IETERS                  | r +                      | AREA (ft²)              | Estima | tial Abstraction<br>S = (1000/0<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO<br>AREA (ft <sup>2</sup> ) | on (S) =<br>CN) - 10<br>Hume =<br>= A x Q<br>Hasin Lim<br>to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 27.58 its 2159+00 CN*A 1955.95 441.53 102.18 400.00 0.000 0.000 0.000 0.000                          | TOTAL AREA<br>19.9<br>11.3<br>2.6<br>4.0<br>0.0<br>0.0<br>0.0<br>0.0<br>0.0 |
| Runo<br>Q = (P - 0.7<br>POST-DEVELOPMENT F<br>Disite Basin Area<br>ond Parcel Area<br>otal Area<br>CURVE NUMBER CALCUA<br>LAND USE<br>Mervious<br>irass<br>ond Site (Pervious)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P.<br>31.28<br>6.62<br>37.9<br>XTION:<br>TYPE ASO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>2.62          | 8.7<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac                   | in<br>IETERS            | r +                      |                         | Estima | tial Abstracti<br>S = (1000/0<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80<br>TYPE D SO             | en (S) =<br>CN) - 10<br>Formation of the second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second second | 27.58<br>its<br>2159+00<br>CN*A<br>1955.95<br>441.53<br>102.18<br>400.00<br>400.00<br>0.000<br>0.000 | TOTAL AREA<br>19.5<br>11.3<br>2.6<br>4.0<br>0.0<br>0.0                      |

NOAA Atlas 14

Runoff Depth (Q) = 13.7 in  $Q = (P - 0.2S)^2/(P + 0.8S)$ 

43.28 ac-ft

Peak Volume = A x Q

Estimated Runoff Volume =

# POND SIZING CALCULATIONS I-75 Pond Siting FPID: 452074-2-32-01

Pond Name: 32-1 Date: 2/28/2024

# POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |          | 31.28 ac               |                |
|--------------------------------------------------|----------|------------------------|----------------|
| Weighted C                                       |          | 0.68                   |                |
| Total Impervious                                 | 0.95     | 19.96 ac               |                |
| Total Pervious                                   | 0.20     | 11.32 ac               |                |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |          | N                      |                |
| Required Treatment (Runoff from 1" Rainfall)     |          | 1.77 ac-ft _ (whicheve | er is greater) |
| Required Treatment (1/2" over Area)              |          | 1.30 ac-ft             | er 10 Broater) |
|                                                  |          | 1.77 ac-ft             |                |
|                                                  |          |                        |                |
| 2) Estimated Peak Attenuation Volume (EPAV):     |          |                        |                |
| Existing Runoff Volume                           |          | 27.58 ac-ft            |                |
| Proposed Runoff Volume                           |          | 43.28 ac-ft            |                |
| EPAV = Proposed Runoff - Existing Runoff Volume  | e        | 15.70 ac-ft            |                |
| 2                                                |          |                        |                |
| Floodplain Comp                                  | ensation | 9.24 ac-ft             |                |
| TOTAL S                                          | TORAGE   | 24.94 ac-ft            |                |
| 3) Estimated Pond Configuration:                 |          |                        |                |
| Maintenance Berm Width                           | 20.0 ft  | Freeboard              | 1.0 ft         |
| L/W Ratio                                        | 2.0      | Side Slopes (1:H)      | 4.0            |
| Maximum Treatment Volume Depth                   | 1.5 ft   | Wet/Dry                | Dry            |
| Maximum Pond Depth Below Freeboard               | 7.0 ft   | Assumed Control EL     | 60.00 ft       |
| 4) Estimated Bond Dimensions Including Freeboard |          |                        |                |

# 4) Estimated Pond Dimensions Including Freeboard

| LTOP OF SLOPE | 605 ft  |
|---------------|---------|
| WTOP OF SLOPE | 302 ft  |
| Area          | 4.19 ac |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 773 ft  |
|-------|---------|
| WSITE | 411 ft  |
| Area  | 7.29 ac |

Pond 32-1

|     | <u>Contour</u> | Area   | <u>Storage</u> | <u>Cumulative</u> | Notes       |
|-----|----------------|--------|----------------|-------------------|-------------|
| GIS | 67             | 68340  | 0.0            | 0.0               | Soil 15     |
| GIS | 72             | 123890 | 480575.0       | 480575.0          |             |
| GIS | 76             | 179230 | 606240.0       | 1086815.0         |             |
|     |                |        | Cumulative R   | et (ac-ft) Belov  | w Freeboard |
|     |                |        |                | 24.95             |             |
|     |                |        |                |                   |             |

Pond Area 4.1

602527 13.83212

# POND SIZING CALCULATIONS

## I-75 Pond Siting

# FPID: 452074-2-32-01

|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | P                                                                                                                                              | ond Name:<br>Date:      | 32-2<br>2/28/3 | 2024                    |        | Full                                                                                    | Туріса                                                      | I Section Wie                                                                                   | ath                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|----------------|-------------------------|--------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------------------------------------------|--------------------------------------------------------|
| RE-DEVELOPMENT RU                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | RAME                                                                                                                                           | TERS                    |                |                         |        |                                                                                         |                                                             |                                                                                                 |                                                        |
| nsite Basin Area                                                                                                                                                                                       | 31.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                |                         |                |                         |        | Ba                                                                                      | asin Lim                                                    | its                                                                                             |                                                        |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                         |                |                         |        | 2126+80                                                                                 | to                                                          | 2159+00                                                                                         |                                                        |
| ond Parcel Area                                                                                                                                                                                        | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                |                         |                |                         |        | 6.4.6.0                                                                                 |                                                             |                                                                                                 |                                                        |
| otal Area                                                                                                                                                                                              | 36.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | ас                                                                                                                                             |                         |                |                         |        |                                                                                         |                                                             |                                                                                                 |                                                        |
| URVE NUMBER CALCUA                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                         |                | TYPE C SO               |        | TYPE D SOI                                                                              | IS T                                                        |                                                                                                 |                                                        |
| LAND USE                                                                                                                                                                                               | TYPE A SO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                | TYPE B SOI              |                |                         | CN     | AREA (ft <sup>2</sup> )                                                                 | CN                                                          | CN*A                                                                                            | TOTAL AREA                                             |
|                                                                                                                                                                                                        | AREA (ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CN                                                                                                                                             | AREA (ft <sup>2</sup> ) | CN             | AREA (ft <sup>2</sup> ) |        | AREA (IL)                                                                               |                                                             | 637.49                                                                                          | 6.5                                                    |
| npvervious                                                                                                                                                                                             | 6.51                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 98                                                                                                                                             |                         |                |                         |        |                                                                                         |                                                             | 966.22                                                                                          | 24.7                                                   |
| rass                                                                                                                                                                                                   | 24.77                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 39                                                                                                                                             | -                       | $\vdash$       |                         |        |                                                                                         |                                                             | 195.00                                                                                          | 5.0                                                    |
| ond Site Pre Condition                                                                                                                                                                                 | 5.00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 39                                                                                                                                             |                         | $\vdash$       |                         |        |                                                                                         |                                                             | 0.00                                                                                            | 0.0                                                    |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | +-+                                                                                                                                            |                         |                |                         |        |                                                                                         |                                                             | 0.00                                                                                            | 0.0                                                    |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                         |                |                         |        |                                                                                         |                                                             | 0.00                                                                                            | 0.0                                                    |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\vdash$                                                                                                                                       |                         |                |                         |        |                                                                                         |                                                             | 0.00                                                                                            | 0.0                                                    |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                         |                |                         |        |                                                                                         |                                                             | 0.00                                                                                            | 0.0                                                    |
|                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                |                         |                |                         |        | 0                                                                                       |                                                             | 1798.72                                                                                         | 36.2                                                   |
|                                                                                                                                                                                                        | NOAA Atlas 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                |                         |                | 0                       |        | WEIGH<br>tial Abstractic<br>S = (1000/C                                                 | on (S) =<br>N) - 10                                         | 10.2                                                                                            | 5                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F                                                                                                                              | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 8.8<br>ARAN                                                                                                                                    | in                      |                |                         |        | WEIGH<br>tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume                | on (S) =<br>N) - 10<br>lume =                               | 10.2<br>26.69                                                                                   |                                                        |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>O <b>OST-DEVELOPMENT F</b><br>Onsite Basin Area                                                                                                 | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>31.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 8.8<br>ARAN                                                                                                                                    | in                      |                |                         |        | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B            | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lim       | 10.2<br>26.69 a                                                                                 | 5                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area                                                                         | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>31.28<br>5.00<br>36.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 8.8<br>ARAN<br>ac<br>ac                                                                                                                        | in                      |                |                         |        | WEIGH<br>tial Abstraction<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume                | on (S) =<br>N) - 10<br>Iume =<br>= A x Q                    | 10.2<br>26.69                                                                                   | 5                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area                                                                                      | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>31.28<br>5.00<br>36.28                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ac<br>ac<br>ac<br>ac                                                                                                                           | in<br>in<br>1ETERS      |                |                         | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to | 10.2<br>26.69 a                                                                                 | 5                                                      |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>Otal Area                                                                 | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>31.28<br>5.00<br>36.28<br>NTION:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ARAN<br>ac<br>ac<br>ac<br>ac<br>ac                                                                                                             | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69 a                                                                                 | 5                                                      |
| Rainfall Depth for 100<br>N<br>Runo<br>Q = (P - 0.:<br>OST-DEVELOPMENT F<br>Insite Basin Area<br>Ind Parcel Area<br>Ind Parcel Area                                                                    | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>31.28<br>5.00<br>36.28<br>5.00<br>36.28<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8.8<br><b>ARAN</b><br>ac<br>ac<br>ac<br>ac<br>ac<br>ac<br>ac<br>c                                                                              | in<br>in<br>1ETERS      | LS<br>CN       |                         | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>:N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to | 10.2<br>26.69<br>its<br>2159+00                                                                 | ac-ft<br>TOTAL AREA                                    |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.:<br>OST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>npervious                                | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>31.28<br>5.00<br>36.28<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 8.8<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac                                                                                                      | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69<br>iits<br>2159+00<br>CN*A<br>1955.95                                             | ac-ft<br>TOTAL AREA<br>19.9                            |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.:<br>OST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>npervious<br>rass                        | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>31.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.0 | 8.8<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>ac<br>S<br>ac<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                             | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69<br>its<br>2159+00<br>CN*A<br>1955.95<br>441.53                                    | ac-ft<br>TOTAL AREA                                    |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.:<br>OST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>npervious<br>rass<br>ond Site (Pervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>31.28<br>5.00<br>36.28<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.8<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>s<br>ac<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69<br>iits<br>2159+00<br>CN*A<br>1955.95                                             | 5<br>ac-ft<br>TOTAL AREA<br>19.5<br>11.3               |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.:<br>OST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>mpervious<br>rass<br>ond Site (Pervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P<br>31.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>36.28<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>37<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.00<br>5.0 | 8.8<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>ac<br>S<br>ac<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S                                             | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69<br>its<br>2159+00<br>0N*A<br>1955.95<br>441.53<br>58.50                           | 5<br>ac-ft<br>19.5<br>11.3<br>1.5<br>3.5               |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.2<br>POST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>Otal Area                                                                 | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>31.28<br>5.00<br>36.28<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.8<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>s<br>ac<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69<br>its<br>2159+00<br>0N*A<br>1955.95<br>441.53<br>58.50<br>350.00                 | 5<br>ac-ft<br>TOTAL AREA<br>19.5<br>11.3<br>1.5        |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.:<br>OST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>npervious<br>rass<br>ond Site (Pervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>31.28<br>5.00<br>36.28<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.8<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>s<br>ac<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69<br>its<br>2159+00<br>2159+00<br>0.00<br>350.00<br>0.00                            | 5<br>ac-ft<br>19.5<br>11.3<br>1.5<br>3.5<br>0.0        |
| Rainfall Depth for 100<br>Runo<br>Q = (P - 0.:<br>OST-DEVELOPMENT F<br>Onsite Basin Area<br>ond Parcel Area<br>otal Area<br>URVE NUMBER CALCUA<br>LAND USE<br>npervious<br>rass<br>ond Site (Pervious) | yr-240hr (P) =<br>NOAA Atlas 14<br>ff Depth (Q) =<br>25) <sup>2</sup> /(P + 0.85)<br>RUNOFF P.<br>31.28<br>5.00<br>36.28<br>TION:<br>TYPE A SO<br>AREA (ft <sup>2</sup> )<br>19.96<br>11.32<br>1.50                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8.8<br>ARAN<br>ac<br>ac<br>ac<br>ac<br>ac<br>s<br>ac<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S<br>S | in<br>IETERS            |                | TYPE CSO                | Estima | WEIGH<br>tial Abstractic<br>S = (1000/C<br>ted Runoff Vo<br>Peak Volume<br>B<br>2126+80 | on (S) =<br>N) - 10<br>lume =<br>= A x Q<br>asin Lim<br>to  | 10.2<br>26.69<br>its<br>2159+00<br>CN*A<br>1955.95<br>441.53<br>58.50<br>350.00<br>0.00<br>0.00 | 5<br>ac-ft<br>19.5<br>11.3<br>1.5<br>3.5<br>0.0<br>0.0 |

Rainfall Depth for 100yr-240hr (P) = 16.9 in NOAA Atlas 14

> **Runoff Depth (Q) =** 13.8 in  $Q = (P - 0.2S)^2/(P + 0.8S)$

Potential Abstraction (S) = 2.9 S = (1000/CN) - 10

Estimated Runoff Volume = 41.81 ac-ft Peak Volume = A x Q

# POND SIZING CALCULATIONS I-75 Pond Siting FPID: 452074-2-32-01

# Pond Name: 32-2 Date: 2/28/2024

#### POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |            | 31.28 ac     |                        |
|--------------------------------------------------|------------|--------------|------------------------|
| Weighted C                                       |            | 0.68         |                        |
| Total Impervio                                   | us 0.95    | 19.96 ac     |                        |
| Total Pervio                                     | us 0.20    | 11.32 ac     |                        |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |            | N            |                        |
| Required Treatment (Runoff from 1" Rainfall)     |            | ן 1.77 ac-ft | (whichever is greater) |
| Required Treatment (1/2" over Area)              |            | 1.30 ac-ft 了 | (whichever is greater) |
|                                                  |            | 1.77 ac-ft   |                        |
|                                                  |            |              |                        |
| 2) Estimated Peak Attenuation Volume (EPAV):     |            |              |                        |
| Existing Runoff Volume                           |            | 26.69 ac-ft  |                        |
| Proposed Runoff Volume                           |            | 41.81 ac-ft  |                        |
| EPAV = Proposed Runoff - Existing Runoff Volu    | me         | 15.13 ac-ft  |                        |
| Floodplain Co                                    | mpensation | 9.24 ac-ft   |                        |
| τοτ                                              | AL STORAGE | 24.37 ac-ft  |                        |
| 3) Estimated Pond Configuration:                 |            |              |                        |
| Maintenance Berm Width                           | 20.0 ft    | Freeboard    | 1.0 ft                 |
| L/W Ratio                                        | 2.0        | Side Slope   | s (1:H) 4.0            |
| Maximum Treatment Volume Depth                   | 1.5 ft     | Wet/Dry      | Dry                    |
| Maximum Pond Depth Below Freeboard               | 5.0 ft     | Assumed      | Control EL 63.00 ft    |
|                                                  |            |              |                        |
| 4) Estimated Pond Dimensions Including Freeboard |            |              |                        |

| LTOP OF SLOPE | 693 ft  |
|---------------|---------|
| WTOP OF SLOPE | 346 ft  |
| Area          | 5.51 ac |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 879 ft  |
|-------|---------|
| WSITE | 464 ft  |
| Area  | 9.36 ac |

|     | Pond           | <u>32-2</u> |                                        |
|-----|----------------|-------------|----------------------------------------|
|     | <u>Contour</u> | <u>Area</u> | Storage Cumulative Notes               |
| GIS | 73             | 56750       | 0.0 0.0                                |
| GIS | 79             | 113450      | 510600.0 510600.0                      |
| GIS | 83             | 166345      | 559590.0 1070190.0                     |
|     |                |             | Cumulative Ret (ac-ft) Below Freeboard |
|     |                |             | 24.57                                  |

| Pond | Area |  |
|------|------|--|
| 3.   | 8    |  |

602527 13.83212

# POND SIZING CALCULATIONS

# I-75 Pond Siting

#### FPID: 452074-2-32-01

|                                                                 |                                                            | Po        | ond Name:<br>Date:      | 32-3<br>2/28/ | 2024                    |         | Full                                | Typica   | al Section Wie                                   | jth                                     |
|-----------------------------------------------------------------|------------------------------------------------------------|-----------|-------------------------|---------------|-------------------------|---------|-------------------------------------|----------|--------------------------------------------------|-----------------------------------------|
| PRE-DEVELOPMENT RU                                              |                                                            |           |                         | el 201        | 2024                    |         |                                     |          |                                                  |                                         |
| Insite Basin Area                                               | 31.28                                                      |           | TERS                    |               |                         |         | R                                   | asin Lim | its                                              |                                         |
|                                                                 |                                                            |           |                         |               |                         | 1       |                                     | 10       | _                                                |                                         |
| ond Parcel Area                                                 | 10.05                                                      | ac        |                         |               |                         |         | 2126+80                             | to       | 2159+00                                          |                                         |
| otal Area                                                       | 41.33                                                      | ac        |                         |               |                         |         |                                     |          |                                                  |                                         |
| URVE NUMBER CALCUA                                              | TION:                                                      |           |                         |               |                         | -       |                                     |          |                                                  |                                         |
| I                                                               | TYPE A SOILS                                               |           | TYPE B SOILS            |               | TYPE C SO               | ILS     | TYPE D SOILS                        |          |                                                  |                                         |
| LAND USE                                                        | AREA (ft <sup>2</sup> )                                    | CN        | AREA (ft²)              | CN            | AREA (ft <sup>2</sup> ) | CN      | AREA (ft <sup>2</sup> )             | CN       | CN*A                                             | TOTAL AREA                              |
| npvervious                                                      | 6.51                                                       | 98        |                         |               |                         |         |                                     |          | 637.49                                           | 6.5                                     |
| rass                                                            | 24.77                                                      | 39        |                         |               |                         |         |                                     |          | 966.22                                           | 24.7                                    |
| ond Site Pre Condition                                          | 10.05                                                      | 39        |                         |               |                         |         |                                     |          | 391.95                                           | 10.0                                    |
|                                                                 |                                                            |           |                         |               |                         |         |                                     |          | 0.00                                             | 0.0                                     |
|                                                                 |                                                            |           |                         |               |                         |         |                                     |          | 0.00                                             | 0.0                                     |
|                                                                 |                                                            |           |                         |               |                         |         |                                     |          | 0.00                                             | 0.0                                     |
|                                                                 |                                                            |           |                         |               |                         |         |                                     |          | 0.00                                             | 0.0                                     |
|                                                                 |                                                            |           |                         |               |                         |         |                                     |          | 0.00                                             | 0.0                                     |
| TOTALS                                                          | 41.33                                                      |           | 0                       |               | 0                       |         | 0                                   |          | 1995.67                                          | 41.3                                    |
|                                                                 |                                                            |           |                         |               |                         |         | WEIGH                               | IED CN   |                                                  | 4                                       |
|                                                                 | ff Depth (Q) =<br>2S) <sup>2</sup> /(P + 0.8S)<br>RUNOFF P | )         |                         |               |                         | Lotinia | <b>ted Runoff Vo</b><br>Peak Volume |          | 29.45 a                                          | ac-ft                                   |
| Onsite Basin Area                                               | 31.28                                                      | ас        |                         |               |                         |         | Basin Limits                        |          |                                                  |                                         |
| ond Parcel Area                                                 | 10.05                                                      | ac        |                         |               |                         | 1       | 2126+80                             | to       | 2159+00                                          |                                         |
| otal Area                                                       | 41.33                                                      | ac        |                         |               |                         |         |                                     |          |                                                  |                                         |
| URVE NUMBER CALCUA                                              | TION:                                                      |           |                         |               |                         |         |                                     |          |                                                  |                                         |
|                                                                 | TYPE A SOILS                                               |           | TYPE B SOILS            |               | TYPE C SOILS            |         | TYPE D SOILS                        |          |                                                  |                                         |
| LAND USE                                                        | AREA (ft <sup>2</sup> )                                    | CN        | AREA (ft <sup>2</sup> ) | CN            | AREA (ft <sup>2</sup> ) | CN      | AREA (ft <sup>2</sup> )             | CN       | CN*A                                             | TOTAL AREA                              |
| npervious                                                       | 19.96                                                      | 98        |                         |               |                         |         |                                     |          | 1955.95                                          | 19.9                                    |
|                                                                 |                                                            | 39        |                         |               |                         |         |                                     |          | 441.53                                           | 11.3                                    |
| rass                                                            | 11.32                                                      |           |                         |               |                         |         |                                     |          |                                                  |                                         |
|                                                                 | 2.65                                                       | 39        |                         |               |                         |         |                                     |          | 103.35                                           | 2.6                                     |
| ond Site (Pervious)                                             |                                                            | 39<br>100 |                         |               |                         |         |                                     |          |                                                  |                                         |
| ond Site (Pervious)                                             | 2.65                                                       | -         |                         |               |                         |         |                                     |          | 103.35                                           | 7.4                                     |
| ond Site (Pervious)                                             | 2.65                                                       | -         |                         |               |                         |         |                                     |          | 103.35<br>740.00                                 | 7.4<br>0.0<br>0.0                       |
| ond Site (Pervious)                                             | 2.65                                                       | -         |                         |               |                         |         |                                     |          | 103.35<br>740.00<br>0.00                         | 7.4<br>0.0<br>0.0<br>0.0                |
| ond Site (Pervious)                                             | 2.65                                                       | -         |                         |               |                         |         |                                     |          | 103.35<br>740.00<br>0.00<br>0.00                 | 2.6<br>7.4<br>0.0<br>0.0<br>0.0<br>0.0  |
| ond Site (Pervious)                                             | 2.65<br>7.40                                               | -         | 0                       |               | 0                       |         | 0                                   |          | 103.35<br>740.00<br>0.00<br>0.00<br>0.00         | 7.4<br>0.0<br>0.0<br>0.0<br>0.0<br>41.3 |
| irass<br>ond Site (Pervious)<br>ond Site (Impervious)<br>TOTALS | 2.65<br>7.40                                               | -         | 0                       |               | 0                       |         | 0<br>WEIGH                          | TED CN   | 103.35<br>740.00<br>0.00<br>0.00<br>0.00<br>0.00 | 7.4<br>0.0<br>0.0<br>0.0<br>0.0         |

Estimated Runoff Volume = 48.20 ac-ft Peak Volume = A x Q

**Runoff Depth (Q)** = 14.0 in Q =  $(P - 0.2S)^2/(P + 0.8S)$ 

# POND SIZING CALCULATIONS I-75 Pond Siting FPID: 452074-2-32-01

# Pond Name: 32-3 Date: 2/28/2024

## POND SIZING ESTIMATION

# 1) Treatment Volume (Proposed Basin Area x 1" Runoff):

| Area Inside R/W                                  |                                                 | 31.28 ac          |            |             |  |  |
|--------------------------------------------------|-------------------------------------------------|-------------------|------------|-------------|--|--|
|                                                  |                                                 | 0.68              |            |             |  |  |
| Weighted C<br>Total Imperviou                    | s 0.95                                          | 19.96 ac          |            |             |  |  |
| Total Perviou                                    |                                                 | 11.32 ac          |            |             |  |  |
|                                                  | 3 0.20                                          | N                 |            |             |  |  |
| Outstanding FL Water (Y/N)[multiply x 1.5]       |                                                 | 1.77 ac-ft ך      |            |             |  |  |
| Required Treatment (Runoff from 1" Rainfall)     |                                                 | 1.30 ac-ft        | (whichever | is greater) |  |  |
| Required Treatment (1/2" over Area)              |                                                 | 1.30 ac-ft        |            |             |  |  |
|                                                  |                                                 | 1.77 at-it        |            |             |  |  |
| 2) Estimated Peak Attenuation Volume (EPAV):     |                                                 |                   |            |             |  |  |
| 2) Estimated Fear Attendation Column (2007)      |                                                 |                   |            |             |  |  |
| Existing Runoff Volume                           |                                                 | 29.45 ac-ft       |            |             |  |  |
| Proposed Runoff Volume                           | -                                               |                   |            | 48.20 ac-ft |  |  |
| •                                                | EPAV = Proposed Runoff - Existing Runoff Volume |                   |            |             |  |  |
|                                                  |                                                 |                   |            |             |  |  |
| Floodplain Con                                   | npensation                                      | 9.24 ac-ft        |            |             |  |  |
| ΤΟΤΑ                                             | TOTAL STORAGE                                   |                   |            |             |  |  |
| 3) Estimated Pond Configuration:                 |                                                 |                   |            |             |  |  |
| Maintenance Berm Width                           | 20.0 ft                                         | Freeboard         | 1          | 1.0 ft      |  |  |
|                                                  | 2.0                                             | Side Slopes (1:H) |            | 4.0         |  |  |
| L/W Ratio                                        | 1.5 ft                                          |                   |            | Dry         |  |  |
| Maximum Treatment Volume Depth                   | 5.0 ft                                          |                   |            | 60.00 ft    |  |  |
| Maximum Pond Depth Below Freeboard               |                                                 |                   |            |             |  |  |
| 4) Estimated Pond Dimensions Including Freeboard |                                                 |                   |            |             |  |  |
| 4) Latinuccu Fond Binchions metalog, Feederal    |                                                 |                   |            |             |  |  |
|                                                  | - 744 6                                         |                   |            |             |  |  |

| LTOP OF SLOPE | 741 ft  |
|---------------|---------|
| WTOP OF SLOPE | 370 ft  |
| Area          | 6.29 ac |

# 5) Minimum Site Dimensions (Considering Maintenance Berm and 20% Factor of Safety)

| LSITE | 937 ft   |
|-------|----------|
| WSITE | 492 ft   |
| Area  | 10.59 ac |

|     | Pond           | <u>32-3</u> |                                        |            |         |  |  |  |
|-----|----------------|-------------|----------------------------------------|------------|---------|--|--|--|
|     | <u>Contour</u> | Area        | <u>Storage</u>                         | Cumulative | Notes   |  |  |  |
| GIS | 66             | 69450       | 0.0                                    | 0.0        | Soil 15 |  |  |  |
| GIS | 71             | 146650      | 540250.0                               | 540250.0   |         |  |  |  |
| GIS | 75             | 195450      | 684200.0                               | 1224450.0  |         |  |  |  |
|     |                |             | Cumulative Ret (ac-ft) Below Freeboard |            |         |  |  |  |
|     |                |             |                                        | 28.11      |         |  |  |  |

## Pond Area 4.5

602527 13.83212 **APPENDIX C** I-75 Flood Hazard Zones and Soils





- DFW Aquatic Preserves
- C Other OFWs
- C Special OFWs

# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- - Area with Reduced Risk Due to Levee
  - Service Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland -
- 1000 Freshwater Pond
- 1 Lake
- Other

I-75 FROM

0 50100 200

Feet

**FLORIDA TURNPIKE TO SR 200** 



- Serves OFW Aquatic Preserves
- C Other OFWs
- Special OFWs

# **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard 100
- Future Conditions 1% Annual Chance Flood Hazard 🧮 Riverine 5076

- Hydraulic Soil Group
  - Mission Area with Reduced Risk Due to Levee
  - Marea with Risk Due to Levee

#### WETLANDS

- 100 Estuarine and Marine Deepwater
- Estuarine and Marine Wetland 1
- Freshwater Emergent Wetland 1
- Freshwater Forested/Shrub Wetland 1915
- 1000 Freshwater Pond
- Lake
- Other

0 50100 200 Feet

I-75 FROM **FLORIDA TURNPIKE TO SR 200** 



- OFW Aquatic Preserves
- C Other OFWs
- C Special OFWs

## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 🂻 Riverine

- Hydraulic Soil Group
  - Misk Due to Levee
  - 🦗 Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland **C**
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond 200
- 100 Lake
- Other

I-75 FROM **FLORIDA TURNPIKE TO SR 200** 

0 50100 200

Feet



- OFW Aquatic Preserves
- C Other OFWs
- Special OFWs

# **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Area with Risk Due to Levee

#### **WETLANDS**

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- Lake
- Other

I-75 FROM **FLORIDA TURNPIKE TO SR 200** 

0 50100 200

Feet

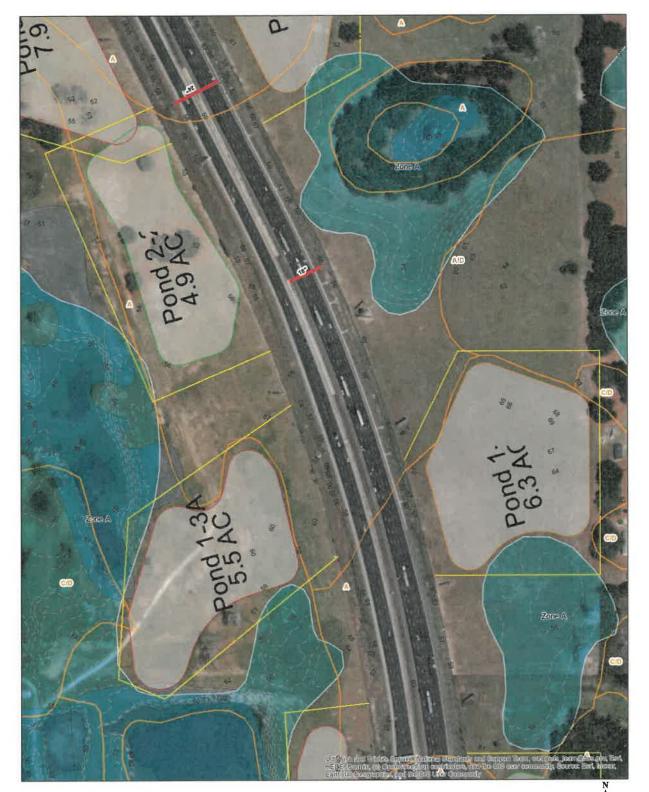


- OFW Aquatic Preserves
- C Other OFWs
- 🗖 Special OFWs

## **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- 100 **Regulatory Floodway**
- Special Floodway 100
- Area of Undetermined Flood Hazard -
- 0.2% Annual Chance Flood Hazard 100
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 🧮 Riverine


- 🚞 Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Misk Due to Levee

## WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake 10
- Cther 🔍



I-75 FROM **FLORIDA TURNPIKE TO SR 200** 



- OFW Aquatic Preserves
- C Other OFWs
- **D** Special OFWs

# **Flood Hazard Zones**

# Zone Type

- = 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard 10.0
- 10 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- Hydraulic Soil Group
  - Marea with Reduced Risk Due to Levee
  - Misk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- **Estuarine and Marine Wetland**
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland -
  - Freshwater Pond
- Lake
- Other

I-75 FROM FLORIDA TURNPIKE **TO SR 200** 

0 50100 200 Feet



- OFW Aquatic Preserves
- Cher OFWs
- 📛 Special OFWs

# Flood Hazard Zones

# Zone Type

- 1% Annual Chance Flood Hazard
- **Regulatory Floodway**
- Special Floodway
- Area of Undetermined Flood Hazard -
- 0.2% Annual Chance Flood Hazard -
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 🂻 Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland 120
- Freshwater Emergent Wetland 122
- Freshwater Forested/Shrub Wetland 100
- Freshwater Pond **E**35
- Lake
- 100 Other

I-75 FROM **FLORIDA TURNPIKE TO SR 200** 

0 50100 200

Feet



- SFW Aquatic Preserves
- Cher OFWs
- Special OFWs

# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- **Regulatory Floodway**
- Special Floodway 1000
- Area of Undetermined Flood Hazard
- -0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Misk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- -Estuarine and Marine Wetland
- Freshwater Emergent Wetland -
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- Lake
- Other

I-75 FROM FLORIDA TURNPIKE **TO SR 200** 

0 50100 200 Feet



- OFW Aquatic Preserves
- Cher OFWs
- 📁 Special OFWs

# **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- -Regulatory Floodway
- 68 Special Floodway
- Area of Undetermined Flood Hazard -
- 0.2% Annual Chance Flood Hazard -
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 🂻 Riverine

- C Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Area with Risk Due to Levee

#### **WETLANDS**

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland 100
- Freshwater Pond
- Lake
- -Other



I-75 FROM FLORIDA TURNPIKE **TO SR 200** 



- DFW Aquatic Preserves
- C Other OFWs
- Special OFWs

# **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- 100 **Regulatory Floodway**
- Special Floodway 100
- Area of Undetermined Flood Hazard
- 100 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- Hydraulic Soil Group
  - Mrea with Reduced Risk Due to Levee
  - Marea with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- 100 Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- 100 Freshwater Pond
- 1000 Lake
- Other



0 50100 200 Feet



- 📖 OFW Aquatic Preserves
- C Other OFWs
- 🗖 Special OFWs

#### **Flood Hazard Zones**

### Zone Type

- 1% Annual Chance Flood Hazard
- **Regulatory Floodway**
- Special Floodway 100
- Area of Undetermined Flood Hazard -
- 0.2% Annual Chance Flood Hazard
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 🂻 Riverine

- 🚞 Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - 🥗 Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland **1**
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- -Lake
- Other

**I-75** FROM **FLORIDA TURNPIKE TO SR 200** 

0 50100 200

Feet



- DFW Aquatic Preserves
- C Other OFWs
- C Special OFWs

# **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- 100 **Regulatory Floodway**
- Special Floodway
- Area of Undetermined Flood Hazard
- 100 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard 🧮 Riverine 100

- Time Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Misk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater -
- ER. **Estuarine and Marine Wetland**
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- 100 Freshwater Pond
- Lake
- -Other



I-75 FROM FLORIDA TURNPIKE **TO SR 200** 



- OFW Aquatic Preserves
- C Other OFWs
- Special OFWs

# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- 100 **Regulatory Floodway**
- Special Floodway 12.0
- Area of Undetermined Flood Hazard 100
- 0.2% Annual Chance Flood Hazard 100
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 🧮 Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Misk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater 100
- Estuarine and Marine Wetland 100
- Freshwater Emergent Wetland 100
- Freshwater Forested/Shrub Wetland test i
- Freshwater Pond
- Lake
- Long St. Other



I-75 FROM FLORIDA TURNPIKE **TO SR 200** 



- OFW Aquatic Preserves
- C Other OFWs
- C Special OFWs

# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard 100
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Marea with Risk Due to Levee

#### WETLANDS

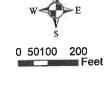
- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other

- FROM **FLORIDA TURNPIKE TO SR 200**
- 0 50100 200 Feet
- I-75

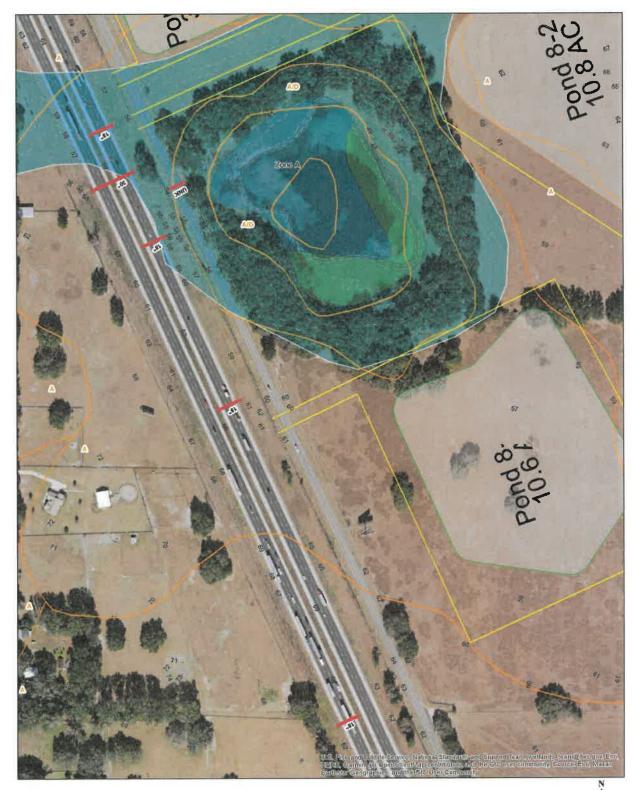


- OFW Aquatic Preserves
- Mar Of Ws
- Special OFWs

# **Flood Hazard Zones**


# Zone Type

- 1% Annual Chance Flood Hazard
- **Regulatory Floodway**
- Special Floodway 100
- Area of Undetermined Flood Hazard -
- 0.2% Annual Chance Flood Hazard 1.1
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 🧮 Riverine


- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Mrea with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater -
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other



I-75 FROM **FLORIDA TURNPIKE TO SR 200** 



- OFW Aquatic Preserves
- C Other OFWs
- Special OFWs

# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Rrea of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- Hydraulic Soil Group
  - Marea with Reduced Risk Due to Levee
  - Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland ----
- Freshwater Pond
- -Lake
- Other

I-75 FROM **FLORIDA TURNPIKE TO SR 200** 

0 50100 200

Feet



- OFW Aquatic Preserves
- Cher OFWs
- Special OFWs

## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- 100 **Regulatory Floodway**
- 1 Special Floodway
- Area of Undetermined Flood Hazard -
- 0.2% Annual Chance Flood Hazard 1000
- 🍧 Future Conditions 1% Annual Chance Flood Hazard 💻 Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Marea with Risk Due to Levee

## WETLANDS

- Estuarine and Marine Deepwater -
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland 100
- Freshwater Forested/Shrub Wetland 100
- Freshwater Pond
- Lake -
- Other



0 50100 200

Feet

**TO SR 200** 



- I OFW Aquatic Preserves
- C Other OFWs
- Special OFWs

# **Flood Hazard Zones**

# Zone Type

- in t 1% Annual Chance Flood Hazard
- 100 **Regulatory Floodway**
- Special Floodway 100
- Area of Undetermined Flood Hazard 10.0
- -0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Marea with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland let i
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- 1005 Freshwater Pond
- -Lake
- Other



0 50100 200

Feet



- Serves OFW Aquatic Preserves
- C Other OFWs
- Special OFWs

## Flood Hazard Zones

#### Zone Type

- 1% Annual Chance Flood Hazard
- 100 **Regulatory Floodway**
- 100 Special Floodway
- Area of Undetermined Flood Hazard -
- 0.2% Annual Chance Flood Hazard 1001
- 😁 Future Conditions 1% Annual Chance Flood Hazard 🧮 Riverine

- Hydraulic Soil Group
  - Area with Reduced Risk Due to Levee
  - Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland -
- Freshwater Forested/Shrub Wetland .....
- Freshwater Pond
- 1.00 Lake
- Other



I-75 FROM **FLORIDA TURNPIKE TO SR 200** 



# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
  - Misk Due to Levee

#### **WETLANDS**

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- 💻 Lake
- Other

Tool i

Riverine



0 50100 200 Feet



# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
  - Misk Due to Levee

# WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine





# **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
  - Area with Risk Due to Levee

# WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Eiverine



0 50100 200 Feet



# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
  - Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine





# **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

#### 

Marea with Risk Due to Levee

## WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine

W S E

0 50100 200 Feet



# **Flood Hazard Zones**

# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
  - 🥗 Area with Risk Due to Levee

## WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- 💻 Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine



0 50100 200 Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Misk Due to Levee

#### WETLANDS

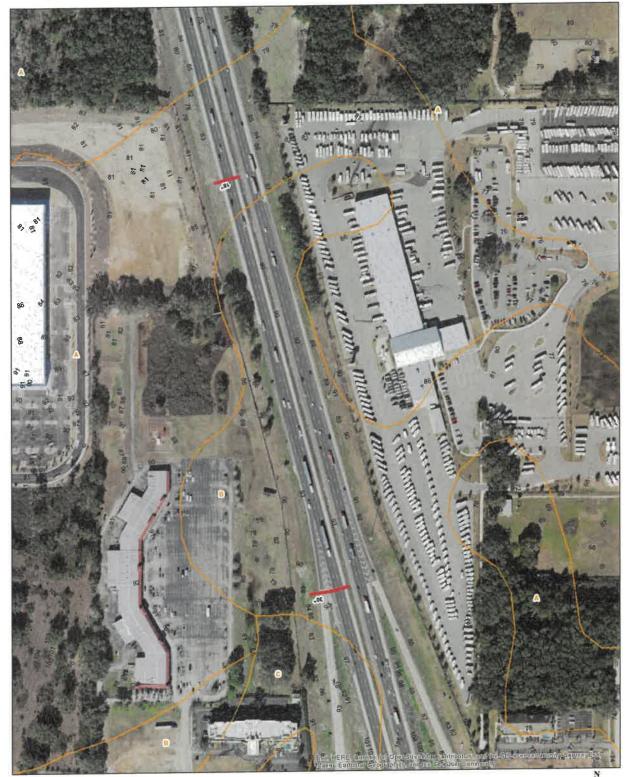
- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- miverine 🔤





## **Flood Hazard Zones**

#### Zone Type


- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- 🥙 Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- 🚞 Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Marea with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- Lake
- Other

1

Riverine

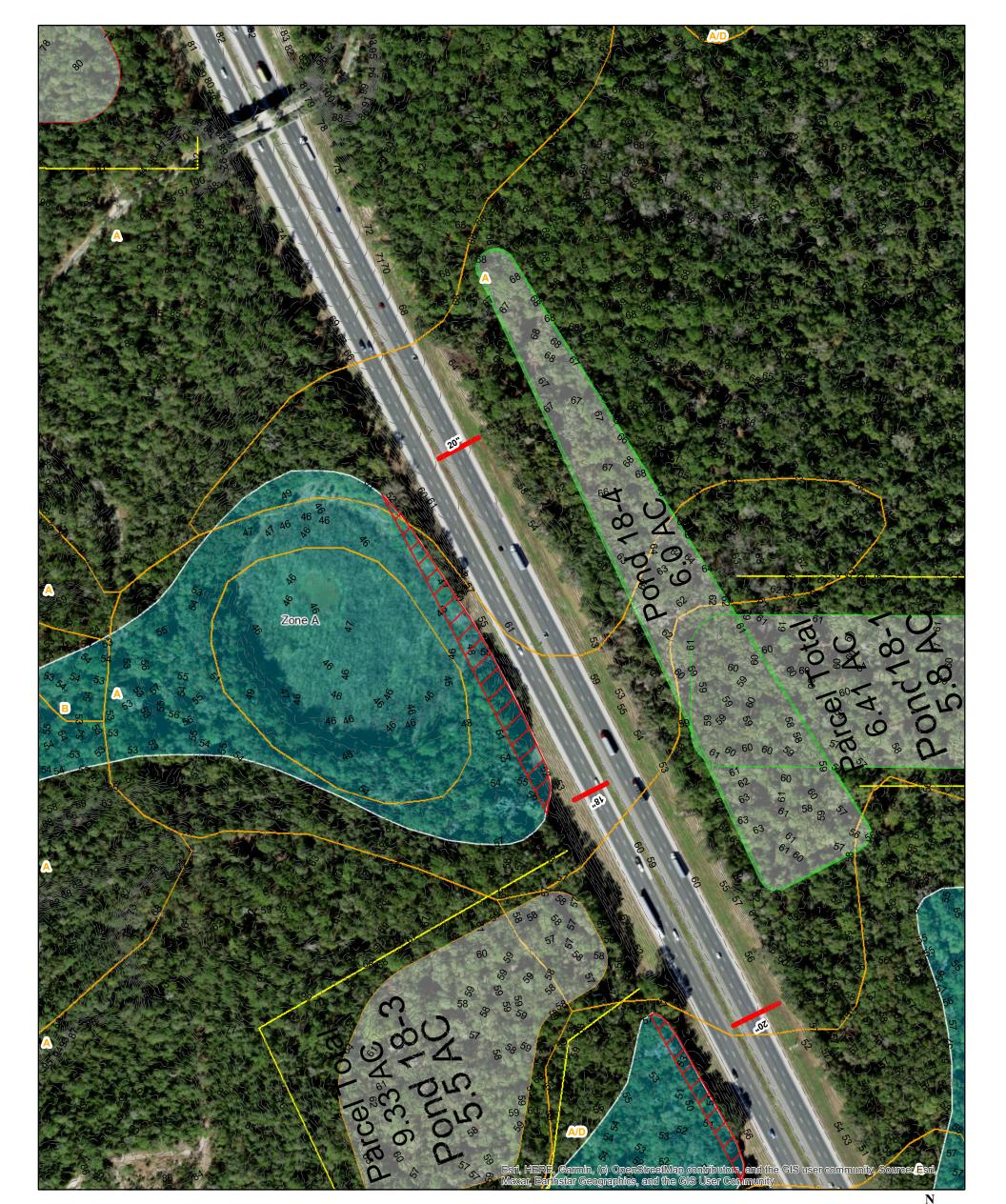


FLORIDA TURNPIKE TO SR 200



## **Flood Hazard Zones**

## Zone Type


- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Minimized Area with Reduced Risk Due to Levee

- 🚞 Hydraulic Soil Group
- Area with Risk Due to Levee

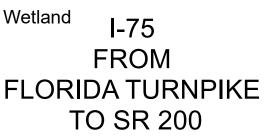
#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine





# **Flood Hazard Zones**


# Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee
- Z Floodplain Encroachment

- Hydraulic Soil Group
- Area with Risk Due to Levee

# WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine



0 50100 200

Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine



0 50100 200 Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- Lake
- Other

Riverine



0 50100 200 Feet



## **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Misk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- 🔲 Lake
- 🥌 Other

Riverine





## **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Marea with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
   Lake
- Other
- Riverine



## 0 50100 200 Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Mission Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee


- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- Lake
- Other
- Riverine



0 50100 200 Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Minimized Risk Due to Levee

- Hydraulic Soll Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- **Regulatory Floodway** 100
- Special Floodway 121
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard 2.75
- Area with Reduced Risk Due to Levee E.M.

- Hydraulic Soil Group
- Misk Due to Levee

#### **WETLANDS**

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland 200
- Freshwater Emergent Wetland -
- Freshwater Forested/Shrub Wetland
  - **Freshwater Pond**
- -Lake
- Other

1

Riverine



Feet

1-75 FROM **FLORIDA TURNPIKE TO SR 200** 



## **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- 🖂 Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- Lake
- Other
- Riverine





## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond Lake
- Other

2100

Riverine

W S E

0 50100 200 Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- 🛤 Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- 🧶 Other
- Riverine





## **Flood Hazard Zones**

## Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
  - Freshwater Pond
- Lake
- Other
- Riverine



0 50100 200 Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee


- Hydraulic Soil Group
- Misk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine



0 50100 200 Feet



## **Flood Hazard Zones**

#### Zone Type

- 1% Annual Chance Flood Hazard
- Regulatory Floodway
- Special Floodway
- Area of Undetermined Flood Hazard
- 0.2% Annual Chance Flood Hazard
- Future Conditions 1% Annual Chance Flood Hazard
- Area with Reduced Risk Due to Levee

- 🗀 Hydraulic Soil Group
- Area with Risk Due to Levee

#### WETLANDS

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond
- 💻 Lake
- Other
- Riverine



0 50100 200 Feet





## Stephen Browning, PE

Florida Department of Transportation District Five 719 S. Woodland Blvd DeLand, FL 32720 (904) 769-6595 Stephen.Browning@dot.state.fl.us